
Incremental Variability Management in Conceptual
Data Models of Software Product Lines

Niloofar Khedri
School of Electrical and Computer Engineering

College of Engineering
University of Tehran, Tehran, Iran

nkhedri@ut.ac.ir

Ramtin Khosravi
School of Electrical and Computer Engineering

College of Engineering
University of Tehran, Tehran, Iran

r.khosravi@ut.ac.ir

Abstract—Software Product Line Engineering is an approach
to management of diversity in software families. Although several
SPLE approaches exist in the domains of industrial software
applications, product lines of data-intensive software systems
have gained less attention. We use an incremental, delta-oriented
technique to handle variability by specifying changes to be
made to a core data model to define the data schemas of the
products. We present a new merge-prune operator based on
the superimposition of models as well as the structural well-
formedness rules specified formally in Alloy. Our method provides
a modular way to handle variability in data intensive systems.
It is scalable with respect to the number of variation points in
the system in contrast to the traditional annotative approaches
for variability modeling. We have investigated the applicability
of our approach by using it in a real-world case study.

I. INTRODUCTION

Software product line engineering is an approach to man-
age diversity in families of software products. The approach
is based on defining the commonalities and variabilities of the
products and building reusable platforms. This is commonly
done using feature modeling technique. A feature is a promi-
nent or distinctive user-visible aspect, quality or characteristic
of a software system [1]. A feature can be decomposed into
several “mandatory”, “optional”, or “alternative” sub-features
and features can have “or”, “requires” and “excludes” relation-
ships [2]. A feature model contains the compact representation
of all products of software family in terms of features.

According to the essential role of data in software inten-
sive systems, the variability modeling in software intensive
product lines must incorporate the diversity in data and data
models too. The importance of the variability management
in enterprise information systems is highlighted in [3]. Some
studies on data model variability concentrate on variability at
the domain model level [4]. This approach is not particularly
designed to support the data model variability and it does
not directly address the design and implementation of the
data model. There are two reasons behind addressing the data
model variability directly: first, data model is regarded as an
independent artifact in many software intensive systems and
the variability in data model is not necessarily identical to that
in application. Second, as the database model concentrates on
data and relations between the data, and as database design and
implementation is an important phase of the software intensive
systems development; applying reuse strategies in order to
construct a data model for the family is a key factor to manage

the variability of the product family.

The presented approach on variability management is based
on the delta-oriented programming (DOP) method [5]. In DOP,
a core module implements the mandatory features of the
product family and delta modules are related to the alternative
or optional features. A product is created by applying delta
modules to the core module incrementally. As the basic
idea of DOP is not restricted to any particular modeling or
programming language, we apply it to database modeling to
design and implement the product data model. We assume that
the core model consists of the mandatory and some selected
alternative and optional features and then build a delta model
for each non-core feature as a modification on the core model.

For the purpose of this work, the entity-relationship (ER)
model has been chosen as a standard method to represent the
abstract and conceptual model of database design; as a result,
the core and deltas are commonly understood by database
designers. A core module (model) is an ER model, which
includes entities, relationships and attributes (collectively re-
ferred to as database objects) of mandatory and a number of
selected alternative and optional features. Similar to DOP, the
data model of a product is generated automatically by applying
the deltas corresponding to the selected (non-core) features of
a given product configuration to the core. In the original DOP
method, delta modules are described in a textual notation,
expressing the transformations on the model. To keep our
notations uniform, we use annotated ER diagrams to express
delta transformations, in which database objects are annotated
by various tags such as Add, Remove, etc. (see Section III).
It is important to note that our method is not classified as an
annotative method to variability management in which model
elements are annotated by the corresponding features.

An alternative to DOP is feature-oriented approach that a
specific feature is implemented in a feature module containing
related data model elements. A feature module only replaces or
extends parts of the implementation of core, but a delta module
can remove parts of the implementation as well as extend
or replace the implementation of other deltas [6]. In feature-
oriented methods such as [7], [8] the database model is created
by composing the feature modules (using superimposition) and
they cannot transform (a part of) the model to a new one. In
some cases, the implementation of a feature requires some
changes in the model that contains changes in element types,
for instance, an attribute is changed to an entity. The attribute
must be removed and a new entity must be added. The methods

in [7], [8] cannot support such changes. Accordingly, a more
complex composition operation is needed, so we present the
merge-prune operator for this purpose (Section IV-A). The
database objects are annotated to handle the transformation
operation. As a result, the presented method supports the
mentioned cases as well.

In order to produce a consistent database model from
a valid product configuration, inconsistencies between delta
models should be recognized prior to the development of the
product database model. For instance, suppose that Delta1
removes entity A from the core and Delta2 adds an attribute to
the same entity. Obviously, applying both Delta1 and Delta2
in the same product is not possible; hence these two delta
modules are not consistent in this case. The consistency rules
are checked during the database model generation.

To provide a formal semantics for our method, we translate
database meta-model and merge-prune operator into an Alloy
specification [9] and exploit the tool support, provided by
Alloy Analyzer, to create instances of the meta-model and
database as well as check the correctness of the merge-prune
operator. Alloy is a lightweight specification language based
on relational logic, which is relatively easy to learn and use
compared to other specification languages.

Our case study is a family of university software systems.
This case study is part of a project which is currently being
done in the Software Architecture Laboratory in University
of Tehran on developing a middle-sized product line for uni-
versity information systems aimed at realizing and addressing
problems in development of information systems product lines.
Our main contributions in this paper are summarized below:

• Providing a modular and scalable variability manage-
ment method for data models.

• Defining a merge-prune operator on ER models pro-
vided with formal semantics (relational logic).

• Applying our method on a real-world case study to
demonstrate the applicability of the techniques.

II. PRELIMINARIES

A. Feature Model

A feature model is a representation of the features of a
product family. Features are organized into a tree called feature
diagram. A parent feature has a number of mandatory, optional
and alternative sub-features. Features can have “or”, “exclude”
(“xor”) and “require” relationship. Fig.1 illustrates our running
example of a simplified university product line feature model
emphasizing the features related to the data model.

A feature model can be represented by a corresponding
propositional logic formula in terms of a set of boolean
variables [10]. Each boolean variable corresponds to a feature
and its value indicates if the feature is included or excluded.

A feature model is a pair (F , ψF) where F = {f1, ..., fm}
is the set of features and ψF is a propositional logic formula
representing the constraints among features. The ultimate
formula ψF is the conjunction of implications from:

• Each child feature to its parent feature

Fig. 1. Simplified university feature model

• Each parent to its mandatory child features

• Each parent to or/xor of its children that have an or/xor
relationship

• Each feature f to other features that f requires

• Each feature f to the negation of other features that
f excludes

For instance, a part of ψF of the simplified university
feature model is represented by:
University ∧ (University → Student) ∧ (Student → University)
∧ (Program → University) ∧ (Student → Major) ∧ (Major →
Student) ∧ (ID → Student) ∧ (Student → ID) ∧ ...

A set of features fc satisfies ψF (fc |= ψF), if ψF is true
after substituting the variables related to the existing feature(s)
with true and non-existing feature(s) in fc with false. By
fc |= ψF we mean that fc corresponds to a valid product
configuration.

A set of features f ⊆ F is consistent, if we can extend
it to fp in a way that Fp is a valid product configuration. In
other word, ∃Fp ⊆ F · (f ⊆ Fp)∧ (Fp |= F). In this case, the
features in f are consistent with the feature model constraints,
and can be regarded as partial configurations.

B. ER Models

“The entity-relationship data model perceives the real
world as consisting of basic objects, called entities, and re-
lationships among these objects” [11]. As we represent the
core and deltas by entity-relationship models, here we define
the elements of an ER model.

“An entity is an object in the real world that is distinguish-
able from all other objects” [11]. The names of the entities are
selected from the EntityName domain. Each entity has some
describing properties called attributes. We assume Attribute to
be the set of all attributes of the entities. Each attribute takes
its name from the domain of AttributeName and its value from
DataType. The primary key is a set of attributes whose values
uniquely determine each instance of entity. An entity E is
a triple E = (name, A, PK) where name ∈ EntityName,
A ⊆ Attribute is the set of attributes of E and PK ⊆ A is the
primary key of E.

Student

Course

Offering

Takes

Term

Course

Instructor

Teaches

Offered as

Prerequisite

m

n

mn

n n

n

m

1

m

Includes

Fig. 2. Core ER Model

In the entity and relationship definitions, A is a set of
attributes. An attribute A is a tuple A = (name, T) where
name ∈ AttributeName and T ∈ DataType where DataType is
the set of defined data types. To keep it simple, we assume
the name of the attributes are unique (or we add the name of
the entity as the prefix to the attribute’s name).

“A relationship is an association among several entities”
[11]. A relationship R is a triple R = (name, A,Nameentity)
where name ∈ RelationshipName, A ⊆ Attribute is the set of
attributes A and Nameentity ⊆ EntityName is the set of entities
related to the relationship.

Note that, for simplicity we assume that an ER diagram
has only binary relationships. Also, we assume that the sets
related to the name of the entity, relationship, and attribute
are disjoint.

An ER model describes a database in terms of entities and
their relationships. For instance, Fig.2 shows a sample ER
model (attributes are not shown in the figures of the paper
to keep them simpler). An entity-relationship model ER is a
tuple (E, R) where E ⊆ Entity and R ⊆ Relationship.

Collectively, we refer to all the elements of an ER model
as database object. We define DBO as the set of all database
objects: DBO = Entity ∪ Relationship ∪ Attribute

As we will see in Section IV, during composition of the
deltas and the core, we may have several versions of the same
database objects in a model. Hence, we define the following
equivalence relation: ∀dbo1, dbo2 ∈ DBO, we define dbo1 ≡
dbo2 if they have the same name.

III. INCREMENTAL VARIABILITY MODELING METHOD

In the original delta-oriented programming (DOP), the
implementation of a product family is divided into a core
module and a set of delta modules [5]. The core module
usually implements a complete product for a valid feature
configuration. A delta describes a set of modifications to an
object-oriented program. One can implement a product by
starting from a core module and then applying delta modules
to the core in order to include different features. Delta modules
can add (remove) code to (from) the product.

We apply delta-oriented approach in the context of database
design. The core module contains an ER model including
database objects of more common features. Here, we assume
that the core model contains at least all mandatory features
and a set of selected alternative and optional features (that

<<Add>>

Study

Major

m 1..2

<<Remove>>

Major

<<Keep>>

Student
<<Add>>

Program

Fig. 3. Annotated ER of DoubleMajor Feature

Course

Offering

Takes

Term

Course

Instructor

Teaches

Offered as

Prerequisite

m

n

mn

n n

n

m

1

m

Includes

<<Add>>

Study

Major

1..2
<<Add>>

Program

<<Remove>>

Major

m

<<Keep>>

Student

Fig. 4. Merging DoubleMajor to the core

exist in most products of the family). It is important to note
that if such a feature is included in the core, but must be
removed in a certain product, there must be a delta defined
for removal of this feature. In the sample core (Fig.1, features
in dashed line), in addition to mandatory features, the student
identity is StdNumber and each student studies in only one
major (SingleMajor feature). Also, only numerical score type
is supported. The core ER model related to the core features
is depicted in Fig.2.

Delta modules specify changes to the core module in order
to implement products in the family. In the context of database
design, a delta model represents the set of changes to the core
model by creating new database objects as well as removing
or modifying existing ones. Hence, we present an annotated
ER model which represents the changes corresponding to each
feature (influencing the data model). The database objects
which must be removed from the core are annotated by
“Remove” tag and the ones added to the core are annotated
by “Add” tag in the delta model. The database objects from
the core that are needed by the delta are included in the delta
model, annotated by “Keep” tag. For instance, when having the
DoubleMajor feature, each student can study in two majors
at the same time. One way to implement the DoubleMajor
feature is to remove the Major attribute of Student and add a
relationship between Major and Student (Fig.3).

In our method, the data model of a product is generated by
applying the delta models (related to the selected features of
a given product configuration) to the core model sequentially
(the order of applying deltas is discussed in Section IV-B). For
instance, the result of merging delta related to DoubleMajor
(Fig.3) to the core is shown in Fig.4.

At the first step, the first delta is added to the core, so
the first intermediate model is obtained. Then, at each step,
a delta model is applied to the intermediate model generated
in the previous step. We extend the database meta-model, by
introducing the notions of Model, Core, Delta, and Tag.

A database object dbo is tagged by the related operation.
τ(dbo) denotes tag. τ : DBO → Tag and Tag = {Add, Remove,
Keep, No}. Note that, the core database objects are annotated
with the tag “No” at the beginning.

A model is an annotated ER model corresponding to
a valid (partial) feature configuration. Model M is a triple
(DBOm, fm, τm) where DBOm ⊆ DBO, is the set of
all database objects in M , fm ⊆ F , fm is consistent and
τm : DBOm → Tag.

Core model represents an annotated model related to the
mandatory and the selected alternative and optional features.
We define Core = (DBOcore, f0, τ0) ∈ Model, where
DBOcore ⊆ DBO, f0 ⊆ F , f0 is consistent, and ∀d ∈
DBOcore · τ0(d) = No.

A delta model specifies changes to a model (possibly
core). A delta is a triple Delta = (DBOd, fd, τd) ∈ Model,
where DBOd ⊆ DBO, fd ⊆ F , fd is consistent, and
∀d ∈ DBOd · τd(d) ∈ Tag \ {No}.

Note that, in case of changing the entities attached to
a relationship, we remove the relationship and add a new
relationship in the related delta model. This is because we
do not include the “attachments” as first-class objects in our
models.

Sometimes, a delta A needs to modify an element E which
is not in the core, but is added in another delta B that is
required by A. In this case, A also includes E with Add tag,
containing only the modifications to the version of E in B.
As we will see, the merge-prune operator takes care of correct
merging of the two versions of E.

For a delta d (corresponding to feature f), let dep(d) denote
the set of deltas di (corresponding to features fi) such that f
is a child of fi or f Requires fi. This set denotes the deltas
on which d is dependent. We also define Dep(d) as the set
of all deltas on which d is dependent directly or indirectly:
Dep(d) = TransitiveClosure(dep(d)).

A. Well-formedness Rules of a Single Delta Model

As each delta must contain a correct ER model, there are
some other rules which are extracted from the database meta-
model as below:

1) Entity-attribute and Entity-primary key: Each entity
has some attributes and primary keys, so the tags
of the entity, its attributes and primary keys must
be consistent in order to have correct delta models.
For example, if an entity in a delta has Add tag, its
related attributes must have Add tag too. As each
entity should have at least one attribute defined as
the primary key, if we want to remove the primary
key of an entity in a delta model, another field must
be introduced as the primary key in the same delta
model. For a delta = (DBOd, fd, τd), ∀dbod =
(ne, Ae,PKe) ∈ DBOd, ∀a ∈ Ae ∪ PKe

• τd(dbod) = Add ⇒ τd(a) = Add
• τd(dbod) = Remove ⇒ τd(a) = Remove
• τd(a) = Add ⇒ τd(dbod) ∈ {Add, Keep}
• τd(a) = Remove ⇒ τd(dbod) ∈

{Remove, Keep}

• τd(a) = Keep ⇒ τd(dbod) = Keep
• ∀p ∈ PKe ∧ τd(dbod) = Keep ∧ τd(p) =

Remove ⇒ ∃p′ ∈ PKe· τd(p′) ∈ {Add, Keep}
2) Relationship-attribute: Similar rules exist between a

relationship and its attribute(s).
3) Entity-relationship: Each entity is related to some

relationships, so the tags of the entity and its rela-
tionships must be consistent respectively. It is im-
portant that the degree (number of entities that par-
ticipate in a relationship) of the relationships can-
not be changed in the delta models. For a delta =
(DBOd, fd, τd), ∀dboe = (ne, Ae,PKe) ∈ DBOd,
∀dbor = (nr, Ar, nre) ∈ DBOd · ne ∈ nre

• τd(dboe) = Add ⇒ τd(dbor) = Add
• τd(dboe) = Remove ⇒ τd(dbor) = Remove
• τd(dbor) = Add ⇒ τd(dboe) ∈ {Add, Keep}
• τd(dbor) = Remove ⇒ τd(dboe) ∈

{Remove, Keep}
• τd(dbor) = Keep ⇒ τd(dboe) = Keep

B. Well-formedness Rules Among Several Delta Models

Delta models apply changes to the core model to generate
a concrete product model. For a specific valid configuration,
the tags of the database objects in one delta model must be
checked against the tags of the database objects of other delta
models and the core. There are some restrictions for defining
the deltas:

1) If a database object in a delta has Add tag, the
database object must not exist in the core or it
must be removed by a dependent delta. For a delta
= (DBOd, fd, τd) and Core = (DBOcore, f0, τ0):
(∀d ∈ DBOd· τd(d) = Add) ⇒ ((∄c ∈ DBOcore·
c ≡ d) ∨ (∃d′ = (DBOd′ , fd′ , τd′) ∈ Dep(d), ∃e ∈
DBOd′ · (e ≡ d) ∧ (τd′(e) = Remove)))

2) If a database object in a delta has Remove tag, it must
exist in the core or added by a dependent delta.

3) If a database object in a delta has Keep tag, it must
exist in the core and it must not change by all
dependent deltas.

It is important to note that an object may be added more
than once (same for keep and remove) as long as the above
rules are satisfied. This makes the rules independent of the
specific order of applying deltas.

IV. PRODUCT DERIVATION

According to the DOP technique, the data model of a
product is generated by applying the delta models related to
the selected features of a given product configuration to the
core model.

A. The Merge-Prune Operator

The proposed merge-prune operator is based on the su-
perimposition technique. “Superimposition is the process of
composing software artifacts by merging their corresponding
substructures on the basis of nominal and structural similarity”
[12]. The superimposition of two ER models merges the
models in a way that the final model contains all the elements.
Entities or relationships with the same name will have all

attributes and attributes with the same name are replaced in
the element. We ignore the variability in attribute data type,
because it may lead to data-type inconsistency.

The merge-prune operator ⊕ applies a delta d to a model
m. Let d = (DBOd, fd, τd) and m = (DBOm, fm, τm), the
result of m⊕ d is the model r = (DBOr, fr, τr) where

• ⊕ : model × model → model

• fr = fm ∪ fd and fr is consistent.

• Merging Entities: ∀dbom = (n1, A1, PK1) ∈
DBOm, ∀dbod = (n2, A2, PK2) ∈ DBOd · dbom ≡
dbod ⇒ ∃(n3, A3, PK3) ∈ DBOr · (n1 = n2 =
n3) ∧ (A3 = A1 ∪A2) ∧ (PK3 = PK1 ∪ PK2)

• Adding Entities: ∀dbod = (n2, A2, PK2) ∈ DBOd ·
(∄dbom = (n1, A1, PK1) ∈ DBOm · dbom ≡
dbod) ⇒ ∃(n3, A3, PK3) ∈ DBOr · (n3 = n2) ∧
(A3 = A2) ∧ (PK3 = PK2)

• Keeping Existing Entities: ∀dbom =
(n1, A1, PK1) ∈ DBOm ·(∄dbod = (n2, A2, PK2) ∈
DBOd · dbom ≡ dbod) ⇒ ∃(n3, A3, PK3) ∈
DBOr · (n3 = n1) ∧ (A3 = A1) ∧ (PK3 = PK1)

• Similar rules exist for merging, adding and keeping
relationships.

The resulting tags are defined according to the rule that says
the tag of an object in the resulting model is always equal to
the tag of the same object in the delta. For those objects in m
that are not affected by the delta, we keep their tags.

• ∀dbod ∈ DBOd ⇒ ∃dbor ∈ DBOr · dbor ≡
dbod and τr(dbor) = τd(dbod)

• ∀dbom ∈ DBOm.(∄dbod ∈ DBOd · dbom ≡ dbod) ⇒
∃dbor ∈ DBOr · dbor ≡ dbom and τr(dbor) =
τd(dbom)

For instance, the result of applying merge-prune operator
to the core model and the delta model of the DoubleMajor
feature (Fig. 3) is shown in Fig. 4.

B. Order of Applying Deltas

To find the sequence of applying deltas, we create a
dependency graph for the selected features and then use
the topological sort algorithm to find a proper sequence of
applying the related deltas to the core. Then, the merge-prune
operator applies the deltas to the core in that order. The
dependency graph is created as follows:

1) When feature A is not a part of the core but is selected
in the product configuration, there is a node A in the
dependency graph.

2) When feature A is part of the core and is Not selected
in the product configuration, there must be a node
A′ in the dependency graph, representing the delta
defined for removal A from the core.

3) When feature A is the parent of feature B and A is
not in the core (so, neither B), there is an edge from
node A to node B, meaning that A must be applied
before B.

4) When feature B requires a feature A which is not in
the core, there is an edge from node A to node B.

5) When feature D has alternative or excludes relation
with another feature C and feature C is a part of the
core, there is an edge from node C ′ to node D.

After applying related deltas to the core, all the database
objects with Remove tag are removed from the model in the
post-process. This process removes attributes of entities and
relationships that have Remove tag, too.

C. Consistency of the Resulting Data Model

In all intermediate models during application of deltas for
a configuration, we have some properties as described below.
These properties can be easily proved based on the well-
formedness rules and the merge-prune semantics (Section V).

• If a database object has Add tag in the model, it is not
in the core model or it must have Remove tag in one
of the previous intermediate models.

• If a database object has Remove tag in the model, it
must be in the core or it must have Add tag in one of
the previous intermediate models.

• If a database object has Keep tag in the model, it must
be in the core and has the same tag in all the previous
intermediate models.

The above properties can be stated formally. For instance,
the first one can be stated as: Let m0, ...,mn be any sequence
of the models obtained from applying topological sort to the
dependency graph, when m0 = (DBO0, f0, τ0) is the core,
m1, ..,mn−1 are intermediate models (mi = (DBOi, fi, τi))
and mn = (DBOn, fn, τn) is the final data model:

(∀dbor ∈ DBOn · τn(dbor) = Add) ⇒ ((∄dbo0 ∈ DBO0 ·
dbo0 ≡ dbor) ∨ (∃i, 0 < i < n, ∃dbomi ∈ DBOmi · dbor ≡
dboi ⇒ τi(dbomi) = Remove))

V. ANALYZING IN ALLOY

We translate extended database meta-model (Section III),
two sets of well-formedness rules (Section III-A and Sec-
tion III-B) and merge-prune operator (Section IV) into Alloy
specification to formally encode the semantics of our method.
Also, we use Alloy Analyzer to confirm the correctness of the
method and resulting data model based on the well-formedness
rules of deltas and defined merge-prune operator.

A. A Quick Introduction to Alloy

Alloy [9], which is based on first order relational logic,
is a formal specification language suitable to identify the
right software abstractions at the early stages of software
development. Alloy Analyzer, is a constraint solver that takes
the specification and the constraints of a model and finds model
instances that satisfy them. In spite of the incompleteness
of the Alloy analysis, the “small scope hypothesis” [13]
(examining all small cases makes finding a counterexample
highly probable) strongly encourages the work on limiting the
scope (size of the model) [9].

An Alloy model specification is a structured specification.
A signature plays the role of a type; it defines the set of

1 sig Entity { name: one Name, attr: some Attribute, pk: some PK,
tag: one Tag }

2 sig Model { entity: some Entity, rel: some Relationship, dref: one Delta }
3 sig Delta { entity: some Entity, rel: some Relationship , dep: set Delta }
4 fact { all disj m, m’: Model |m.dref != m’.dref }
5 fact coreModelEntity { MO/first.entity.tag in No and

MO/first.entity.attr.tag in No and MO/first.entity.pk.tag in No }
6 fact coreModelRelationship {

MO/first.rel.tag in No and MO/first.rel.attrel.tag in No }
7 fact operationAddEntity {

all d: Delta, disj e: d.entity |e.tag in Add implies e.attr.tag in Add }
8 fact operationKeepEntity {

all disj d,d’:Delta, disj e:d.entity, e’:d’.entity |
e.tag in Keep and e.name = e’.name implies (e’.tag = Keep)
and (e.name in MO/first.entity.name)}

9 pred MergeModel [m:Model, m’: Delta,m”: Model] {
m”.entity.name = m.entity.name + m’.entity.name
m”.entity.attr.name = m.entity.attr.name + m’.entity.attr.name
m”.entity.pk.name = m.entity.pk.name + m’.entity.pk.name
all e:m.entity, e’: m’.entity, e”:m”.entity |

e”.name = e’.name and e.name = e’.name implies
e”.tag = e’.tag and MergeAttributePK[e,e’,e”]

all e: m.entity, e’: m’.entity, e1:m”.entity |
e.name != e’.name and e1.name = e.name implies
e1.tag = e.tag and KeepAttributePK[e,e1]

all e: m.entity, e’: m’.entity, e1:m”.entity |
e1.name = e’.name and e.name != e’.name implies
e1.tag = e’.tag and AddAttributePK[e,e1] ... }

10 fact mergeRef { all m: Model |m.dref.DO/next = m.MO/next.dref}
11 fact merge { all m:Model-MO/first |

MergeModel [m.MO/prev, m.MO/prev.dref,m]}

12 assert ConsistencyRules {
13 all m: Model - MO/first, e:m.entity, n:e.name |e.tag in Keep and

n.˜name in MO/first.entity implies n.˜name.tag in No
14 all m: Model - MO/first, e:m.entity, n:e.name |e.tag in Keep implies

n.˜name.tag in Keep + No and e.name in MO/first.entity.name
15 all m: Model - MO/first, e:m.entity, a:e.attr |

(e.tag in Remove implies a.tag in Remove)
16 all m: Model, r:m.rel |r.tag in Add implies r.entity.tag in Keep + Add ... }

Fig. 5. Some parts of the Alloy specification of the method

elements and possibly the relationship with other elements.
Signature extension supports classification hierarchy and in-
heritance. Facts are constraints on signatures that always hold.
Therefore, they have to be satisfied by all the instances of the
model. Predicates define reusable constraints which represent
an operation. Predicates are checked when invoked and the
result can be evaluated to true or false [9].

B. Semantic Description in Alloy

In this section, first we convert the extended database meta-
model into Alloy specification. Then, we encode the semantics
of our method into facts described over the defined signatures.
Here, we present some part of the Alloy specification 1. All
elements in the meta-model are mapped to Alloy signatures.
For instance, line 1 of Fig. 5 shows Alloy signature for Entity
indicating that each entity has a name and a tag plus some
attributes (at least one) and some primary keys.

As the data model of a product is generated by applying
delta models to the core model, at each phase there is a model
on which the next delta is applied to. Hence, each delta has
a reference to the model which should be applied to it (Fig.
6). The Alloy specification of Model and Delta is depicted in
lines 2 and 3 of Fig. 5. Furthermore, a number of facts are
defined in order to describe meta-model constraints in Alloy.

1The complete specification is accessible via http://khorshid.ut.ac.ir/∼n.
khedri/JCaseStudy/dodd.als

Fig. 6. Model and Delta relation

For instance, the facts in lines 5 and 6 of Fig. 5 show that the
database objects in the core must have No tag. Here, MO/first
represents the core model.

We transform the well-formedness rules of the deltas
(Section III-A) to Alloy facts. For instance, Fig. 5 line 7 shows
that if an entity in a delta model has Add tag, all attributes of
the entity (e.attr) must have Add tag.

Further, we translate the well-formedness rules among delta
models (Section III-B) into Alloy specification and check their
correctness using Alloy simulation. For instance, Fig. 5 line 8
shows that if an entity in a delta model has Keep tag, it must be
in the core and it must have Keep tag in all dependent deltas.

A part of Alloy specification of the merge-prune operator
(related to entities and attributes) is depicted in line 9 of Fig. 5.
Merge-prune operator merges a model m and its related delta
m′ and the result is model m′′. The “+” operator in Alloy
stands for the union operation.

Based on the presented meta-model, each model has a
reference to the delta which should be applied to it (Fig. 6);
as a result the merge-prune operator is applied to the model
and its related delta. The Alloy specification for this constraint
is shown in Fig. 5, lines 10 and 11. The first fact means the
next delta for a model’s delta is the same as the next model’s
delta. The second fact denotes that the merge-prune operator
is applied on the previous model and the previous delta except
for the first model (which is the core model). We use the Alloy
Ordering Package to implement these facts.

C. Analysis

We use Alloy Analyzer to examine the database meta-
model constraints and visualize instances of the database meta-
model. Here, we show that having the set of rules for the
core model and delta models as well as defining merge-prune
operator leads us to a correct database model. From the formal
specification of our method, Alloy Analyzer automatically gen-
erates all possible instances within given bounds and validates
the assertions. The database model is checked according to the
model consistency rules (Section IV-C). For instance, lines 12,
13 and 14 of Fig. 5 show that if an entity has Keep tag, it must
have No tag in the core and Keep tag in other models.

Additionally, each data model is a correct annotated ER
model; as a result, we check the database model rules similar to
the delta model rules discussed in Section III-A. For example,
Fig. 5, Line 15 illustrates that if an entity has Remove tag, the
related attributes must have Remove tag. Also, if a relationship
has Add tag, the relating entities must have Add or Keep tags
(Fig. 5, Line 16).

No counterexample found after checking the assertions
within various given scopes.

VI. CASE STUDY

A family of university software systems is chosen as the
case study, because the research group consists of university
students familiar to this application domain as well as the
possibility to study a group of such systems.

The method for analyzing the case study is based on
[14]. A group of software engineering students have studied
six university software systems in our country. One of the
systems has four different versions deployed in four different
universities. All of the studied applications are web-based
and none of them has been developed based on software
product line engineering, only the one that is used in four
universities has configurable features. We analyze university
software systems by using the system, interviewing the users
and domain experts. Features are extracted manually based
on the commonalities and variations in the studied systems
and organized into a feature model. The features common
to all products were considered mandatory. Also, an external
domain expert further reviewed the final feature model. The
set of mandatory features along with other features used more
frequently in the products were selected as the core features.

In parallel to feature modeling, the domain was analyzed
using object-oriented analysis method of [15]. As a result,
a domain model was expressed in a number of UML class
diagrams corresponding to the core and the delta modules.
These diagrams were used to design core and delta module.

We have selected 85 out of 125 features in the whole
family as the case study 2. The core contains 21 mandatory
and three selected optional and alternative features. We build
the core in only one annotated ER diagram 3. There are 61
optional and alternative features which are added to the core
by applying a single delta per feature. All deltas are well-
formed and, deltas are added to the core according to the
sequence derived from applying topological sort to feature
dependency graph. Although there exist thousands of valid
configurations according to the feature model, we chose eight
products which especially include Alternative features (not in
core) and Require relations.

Note that, our method can handle the independent optional
features that their implementations are dependent (known as
optional feature problem), if their sets of dependent features
are not disjoint.

As the goal of this research is to provide a method to
manage variability in the data models. We performed the
mentioned case study to check whether the method can be
applied to a real mid-size project without significant overhead.
The results of the study confirm that the learning curve is
relatively flat and the needed effort is reasonable compared
to doing a project of a similar size without incorporating
variability.

VII. RELATED WORK

In this paper, we propose a delta-oriented method on
database design context to build the database model of a

2The complete case study feature model is accessible via http://khorshid.ut.
ac.ir/∼n.khedri/JCaseStudy/CompleteCaseStudy.pdf

3The complete annotated ER diagrams are accessible via http://khorshid.ut.
ac.ir/∼n.khedri/JCaseStudy/UniversityEducationFM.png

product in a family incrementally by starting from a core data
model and applying delta models to it in order to implement
different features. An approach including the definition of
mapping features to model elements also containing feature
relations is presented in [16]. The work is similar to our
method in maintaining the relation between features and model
elements; however our method focuses on representing data
model variability and each delta model implements a particular
feature.

A. Variability in Database Models

The ADMV process (Addressing the Data Model Vari-
ability) [4] is a UML-based approach for SPL data modeling
and data integration. ADMV provides a unified and systematic
methodology to support a consistent view by using adapters
and views to capture data variability in data models. It is
important to note that [4] does not consider the logical and
conceptual modeling of the database and apply the suggested
technique to a UML-based domain model.

Also, [7] focuses on variable schemas in software product
lines. The related schemas are selected and superimposed to
compose the variable schema. In [8], the work is extended
to generate a tailored database schema automatically using
features. The similarity between [7], [8] and our method is
in building the schema based on superimposition of the ER
diagrams. In composing the database schema, there are cases
that a database element must be removed and another element
added instead. The approaches like [7] and [8] generate the
database by composing the schema parts and they cannot trans-
form a model to a new one. As the presented transformational
supports the mentioned cases as well.

Moreover, an approach for modeling data variability is
provided in [17] which is a part of the overall software product
line modeling approach. The authors introduce a method to
represent and model database variability in a single model.
Note that in [17] the set of variability entities includes entities
and attributes; but in our method relationships, relationship
attributes and primary keys can be variable too. As the size
of the product family increases, representing the data model
variability in a single model is not a suitable way to manage
variability in data model and the resulting data model can be
very complicated.

In our previous work [18], we presented an approach to
manage variability in database design of information system
product lines based on DOP technique [5]. The core consists
of the DDL scripts of the mandatory and some selected
alternative and optional features. Also, each delta consists of
the DDL scripts of the changes to the core to implement the
features outside the core. The DDL scripts include the related
tables, columns, primary keys, foreign keys and constraints to
implement the feature in data model. The consistency of the
resulting database schema is checked by the database man-
agement system (DBMS) when creating the database. In our
current approach, on the other hand, the consistency checking
is done on the ER models at the design time, independent of
the specific DBMS to be used. The textual syntax of the DDL
scripts makes defining and managing deltas easier, but when
the size of the product family increased, managing the deltas
and resolving the conflicts will be complicated. As a result, the

presented method in this paper is more understandable with
regards to the size of the family. Also, the method of [18] is
described solely in SQL language and lacks a mathematical
foundation. Here, we have used relational logic as a basis to
precisely describe our delta-oriented approach.

B. Model Merging

In [19], an integrated approach for building products in
SPL based on merging UML diagrams is proposes. Merging
models is a well known method for product derivation process.

The superimposition technique for UML models is used
in [12] to provide a tool for UML model composition with
variability support. “Superimposition is a technique to merge
code pieces belonging to different features” [12]. A framework
called “FeatureHouse” is proposed to compose software arti-
facts in different languages [20]. They apply their approach on
UML class diagrams, state diagrams and sequence diagrams
to model variability. It is important to note that [12], [19], [20]
concentrate on managing variability in general, and not in data
model. Instead, our method specifically focuses on database
models. Hence, we have made use of the ER meta-model
along with its semantics to provide a composition operation
which is semantically richer than a general merge operator.
For example, our consistency checking rules, make sure that
the resulting data model obeys ER well-formedness rules.

An approach is proposed in [21] on relating variability
model and design model using UML package merge mech-
anism. In our work, we allow a delta to remove elements from
the core as well as merge elements.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we tackled the variability management prob-
lem in data models at conceptual database design level. We
expounded a new variability modeling technique based on the
delta-oriented programming (DOP) technique and superimpo-
sition of ER models. Data model of a product is generated
by applying delta models to the core model sequentially. We
presented a new merge operator, named merge-prune, to apply
deltas to the core. The sequence of merging deltas to the core
is derived from applying topological sort to the dependency
graph of the selected product configuration.

We presented a meta-model for relational database based
on DOP and set of rules to have well-formed core and deltas.
Also, we checked the consistency of the product data model
based on analyzing the tags of database objects. Accordingly,
the models obtained from applying deltas incrementally all
have correct tags for their elements. We transformed the
database meta-model and the merge-prune operator in Alloy
specification and analyzed the consistency of the resulting
model by Alloy Analyzer through transforming consistency
rules to a set of assertions in Alloy.

In comparison to the approach that presents variability in
data model [17], our approach supports software product line
evolution, because it is modular and can handle the changes
related to the feature model well. As we model the variabilities
in separate delta models, our method is scalable in practice in
comparison with methods like [17] that try to represent all
variabilities in a single model. Future work includes adding
tool support for the presented method.

REFERENCES

[1] K. Czarnecki and A. Wasowski, “Feature diagrams and logics: There
and back again.” in Proceedings of the 11th International Software
Product Line Conference. IEEE Computer Society, 2007, pp. 23–34.

[2] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

[3] N. Kozuka and Y. Ishida, “Building a product line architecture for
variant-rich enterprise applications using a data-oriented approach,” in
SPLC Workshops. ACM, 2011, pp. 14:1–14:6.

[4] J. Bartholdt, R. Oberhauser, and A. Rytina, “Addressing data model
variability and data integration within software product lines,” Interna-
tional Journal on Advances in Software, vol. 2, pp. 84–100, 2009.

[5] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-
oriented programming of software product lines,” in SPLC, 2010, pp.
77–91.

[6] S. Schulze, O. Richers, and I. Schaefer, “Refactoring delta-oriented
software product lines,” in AOSD. ACM, 2013, pp. 73–84.

[7] N. Siegmund, C. Kästner, M. Rosenmüller, F. Heidenreich, S. Apel, and
G. Saake, “Bridging the gap between variability in client application and
database schema,” in BTW, 2009, pp. 297–306.

[8] M. Schäler, T. Leich, M. Rosenmüller, and G. Saake, “Building infor-
mation system variants with tailored database schemas using features,”
in CAiSE, 2012, pp. 597–612.

[9] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[10] D. Batory, “Feature models, grammars, and propositional formulas,” in
Proceedings of the 9th international conference on Software product
lines. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 7–20.

[11] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System
Concepts, 4th ed. McGraw-Hill, Inc., 2001.

[12] S. Apel, F. Janda, S. Trujillo, and C. Kästner, “Model superimposition
in software product lines,” in Proceedings of the 2nd International Con-
ference on Theory and Practice of Model Transformations. Springer-
Verlag, 2009, pp. 4–19.

[13] A. Andoni, D. Daniliuc, and S. Khurshid, “Evaluating the small scope
hypothesis,” Massachusetts Institute of Technology - Software Design
Group, Tech. Rep., 2002.

[14] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing., vol. 14, no. 2, pp. 131–164, april 2009.

[15] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[16] F. Heidenreich and C. Wende, “Bridging the gap between features
and models,” in 2nd Workshop on Aspect-Oriented Product Line En-
gineering (AOPLE’07) co-located with the International Conference
on Generative Programming and Component Engineering (GPCE’07),
2007.

[17] L. A. Zaid and O. D. Troyer, “Towards modeling data variability in
software product lines,” in BMMDS/EMMSAD, 2011, pp. 453–467.

[18] N. Khedri and R. Khsoravi, “Handling database schema variability in
software product lines,” in The 20th Asia-Pacific Software Engineering
Conference (APSEC 2013), 2013.

[19] G. Perrouin, J. Klein, N. Guelfi, and J.-M. Jezequel, “Reconciling
automation and flexibility in product derivation,” in Proceedings of the
2008 12th International Software Product Line Conference. Washing-
ton, DC, USA: IEEE Computer Society, 2008, pp. 339–348.

[20] S. Apel, C. Kastner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in Proceedings of the
31st International Conference on Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 221–231.

[21] M. A. Laguna and J. M. Marques, “UML support for designing software
product lines: The package merge mechanism,” Journal of Universal
Computer Science, vol. 16, no. 17, pp. 2313–2332, 2010.

