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Abstract. Reo is an exogenous coordination language based on a calcu-
lus of channel composition. Different formal models have been developed
for this language. In this paper, we present a new approach to modeling
and analysis of Reo connectors using Alloy which is a lightweight model-
ing language based on first-order relational logic. We provide a reusable
library of Reo channels in Alloy that can be used to create a model of
a Reo connector in Alloy. The model is simple and reflects the original
structure of the connector. Furthermore, the model of a connector can
be reused as a component for constructing more complex connectors.
Using the Alloy Analyzer tool, properties expressed as predicates can be
verified by automatically analyzing the execution traces of the Reo con-
nector. We handle the context-sensitive behavior of channels as well as
optional constraints on the interactions with environment. Our composi-
tional model can be used as an alternative to other existing approaches,
and is supported by a well known tool with a rich set of features such as
counterexample generation.

1 Introduction

The concept of “coordination” has resulted to a new class of models, formalisms
and mechanisms for describing concurrent and distributed computations. A co-
ordination language used to develop a coordination model is able to integrate
a set of possibly heterogeneous components together [15]. Reo is a coordination
language based on components and connectors [2]. It offers a way for composi-
tional construction of systems out of black-box components. To achieve this, Reo
provides a compositional mechanism to construct various connectors (commonly
known as Reo circuits). This is based on the notion of channel as primitive con-
nectors from which more complex ones are constructed. We will review basic
concepts of Reo in Sect. 3.1.
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As the main use of coordination languages is in modeling reactive and concur-
rent systems, the problem of verification of models becomes an important issue,
because in these systems correctness is much harder to verify manually, or with
testing. Our goal is to provide a method to model and analyze Reo connectors
using Alloy, which is a lightweight modeling language, based on first-order re-
lational logic [8]. It is supported by an efficient tool called Alloy Analyzer [1]
that will serve as the analysis tool in our method. We briefly review the Alloy
modeling language in Sect. 3.2.

The basic idea of our method is to model the behavior of a Reo connector
by the set of all execution traces of the connector. Each trace is a bounded
sequence of states. In our method, the structure of a Reo connector is constructed
compositionally, from smaller connectors (which are ultimately basic channels).
Each channel imposes a constraint on the states of the trace. Other constraints
are the facts that specify the behavior of the environment of the circuit. We
will explain our modeling method in more detail in Sect. 4. For the sake of
simplicity, our method ignores the values of data passed along Reo channels,
and just considers data flow, though it can be extended to handle data values
too.

The modular structure of Alloy allows us to separate the definitions of prim-
itive Reo constructs from the description of a circuit. We have provided the
definitions of a set of Reo connectors in a module named Relloy [16] that can be
used as a reusable library when modeling various circuits. In Sect. 5.1, we will
see how to describe a Reo circuit using our method. To analyze a Reo circuit,
the modeler provides the properties to be checked in terms of first-order predi-
cate logic formulas, and the Alloy Analyzer automatically checks the properties
using a SAT solver. This way of analysis is not “model checking” and is based on
checking all execution traces of at most a specified number of states. The traces
are generated automatically, satisfying the constraints imposed by the channels
and other facts in the model. Analyzing Reo circuits in our model will be more
elaborated in Sect. 5.2, with a case study on a round-robin dispatcher [17]. We
also address the context-sensitive behavior of connectors, by imposing maximal
progress property on the traces (Sect. 6).

The benefits of our method can be summarized in the following items:

Coverage of Semantics: As mentioned above, we handle all basic concepts of
Reo, as well as the aspects which are normally harder to address, such as
context-sensitive behavior and modeling environment. All of these are based
on the sound basis of relational logic.

Compositionality: The model of Reo connectors are constructed composition-
ally from smaller ones easily. Issues such as renaming are handled automat-
ically by the block structures of Alloy at language level.

Clarity: The description of a Reo connector in our model clearly represents the
original structure of the circuit. Since it does not involve complex mathe-
matical notations, it is more familiar to software engineers. As the syntax
of the description is textual, it is much easier to work with when modeling
large models.
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Tool Support: Alloy is a well-known language, with an efficient tool support.
It offers useful features such as counterexample generation and visualization
which can help the modeler to model and debug the connector in small
iterations.

As some of the benefits above are inherited from Alloy, our method has got
some of its limitations too. The main limitation is that our traces are bounded,
so if Alloy cannot find a counterexample, it does not mean there is none. The
assumption here is that most flaws can be discovered when considering all pos-
sible traces within small bounds exhaustively. Another problem is scalability,
as the analysis takes some time when the model becomes large. However, in an
ongoing work, we are trying to improve the efficiency by techniques that will be
mentioned later. In Sect. 2, we briefly review existing approaches to model Reo
semantics.

2 Related Work

Different formal semantics have been developed for Reo, including Timed Data
Streams (TDS) [3], Constraint Automata (CA) [4], Graph Coloring [5], and
Structural Operational Semantics (SOS) [14]. Timed Data Streams model the
possible flows of data on connector ports, assigning a time to each interaction
(input or output of a data element). The declarative and relational nature of this
semantics is one of its strengths; but there is no support for simulation or model
checking. Constraint automata is a compositional and operational semantics
for Reo. Constraint automata shall be extended with priorities to capture the
context sensitive behavior of connectors. Also, the interaction with environment
is not modeled and I/O requests are considered always available. A symbolic
model checker based on CA semantics is developed [11] and CTL-like properties
can be checked.

The idea of graph coloring semantics is marking data flow or its absence
by colors. A coloring table for a Reo connector actually describes the possible
behavior in a particular configuration of the connector, which includes the states
of channels, plus the presence or absence of I/O requests. A coloring corresponds
to a possible next step based on that configuration. Here, input and output
operations are considered as primitives as well as channels and nodes. A join
operation is then defined on coloring tables. To capture the context sensitive
behavior of connectors a third color shall be added to the semantics. The goal
of graph coloring is more to build a basis for distributed implementation of Reo
circuits despite of generating a semantics basis for analysis.

Based on the Structural Operational Semantics (SOS) of Reo a model checker
using Maude system [13] is developed.

Our approach is similar to CA in its simple way of modeling the Reo connectors
and similar to graph coloring in capturing the behavior by recognizing the block-
ing nodes and synchronous clusters, to obtain the transitions. Furthermore, our
method simply models the behavior of Reo connectors including context
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sensitive behavior and I/O requests of environment without additional complex-
ity. Also, it provides the support of the already-exist automated analyzer of Alloy.

3 Preliminaries

In this section, we briefly review basic concepts of Reo coordination language
and Alloy modeling language. Parts of our discussion on Reo are taken from [4]
and [2] and the overview of Alloy is mainly based on [9].

3.1 Reo

Reo is a coordination language based on components and connectors. As coor-
dination is the main point of concern, the emphasis of Reo is on connectors.
A connector is presented as a graph of nodes and edges where edges represent
channels and nodes are channel ends. Primitive connectors in Reo are called
channels which provide the basic communication mechanisms. A channel always
has two ends. There are two types of channel ends: source and sink. The source
end is the point where data enters into the channel. The sink end is the point
where data leaves the channel. Note that both channel ends may be of the same
type (both source or both sink). Channel ends are connected to each other via
nodes. If all channel ends adjacent to a node are source ends (resp. sink ends),
we call the node a source node (resp. sink node). If there are channel ends of
both types, then the node is called a mixed node.

Reo provides operations that enable components to perform I/O on nodes.
A component can write data items to a source node that it is connected to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A component can obtain
data items from a sink node that it is connected to through destructive take
input operations. A take operation succeeds only if at least one of the (sink)
channel ends coincident on the node offers a suitable data item; if there are
more, one is selected nondeterministically. A mixed node combines the behavior
of a sink node and a source node.

There are several mixed node types in Reo as indicated in Fig. 1. The data
items simply flow through a flow through node. A merge node delivers a value out
of one of the incoming channels nondeterministically. A write on a replication
node succeeds only if all outgoing channels are capable of consuming the written
data. We say a node can be fired, if it can successfully pass the data according
to the mentioned rules.

There are different channel types in Reo. Each channel passes data in a pre-
defined direction. Structurally, each unidirectional channel has a source end that
receives data and a sink end that dispenses it. Bidirectional channels have either
two source ends, or two sink ends. There are no ‘fixed’ set of channel types in Reo,
and new ones can be defined freely with their own policy for synchronization,
buffering, computations, etc.
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(a) (b) (c)

Fig. 1. Three types of mixed nodes: (a) flow through, (b) nondeterministic merge, and
(c) replication

(a) (b) (c) (d)

Fig. 2. Channel notations: (a) Sync (b) SyncDrain (c) LossySync (d) FIFO1

Here, we define the channel types that have been used throughout the exam-
ples in this paper (Fig. 2). The definition for more channel types can be found in
[2]. Note that our reusable library of channels contain more channel types that
are presented in this paper and includes most widely used channels types.

The simplest channel is synchronous (Sync) channel that has a source and a
sink end, and no buffer. It accepts a data item through its source end if and
only if it can simultaneously dispense it through its sink. A synchronous drain
(SyncDrain) accepts data items from its both ends simultaneously and the data
values will be lost. A lossy synchronous (LossySync) channel is similar to a Sync
channel, except that it always accepts all data items through its source end. If
it is possible for it to simultaneously dispense the data item through its sink
the channel transfers the data item; otherwise the data item is lost. A FIFO1
channel represents an asynchronous channel with a buffer of capacity one. A
write operation on the source end succeeds only if the buffer is empty, and a
take operation on the sink end succeeds only if the buffer contains data. This
buffer may be initially empty or contain some data item.

3.2 Alloy

Alloy is a lightweight modeling language based on the first order relational logic
[10]. In an Alloy model, there are a number of signatures each defining a set
of atoms. The definition of a signature may contain a number of fields which
define relations between atoms of signatures. Signatures also serve as types, and
subtyping is possible through signature extension. There are also ways to define
constraints in the model, using constraint paragraphs. There are four kinds of
constraint paragraphs:

Fact: A constraint that always holds
Predicate: Named and parameterized formulas that can be used elsewhere
Function: Named and parameterized expressions that can be used elsewhere
Assertion: A constraint that is intended to follow from the facts of a model

Note that facts can be defined in two ways: either following a signature declara-
tion, or elsewhere in the model. In the first case, they are implicitly quantified
over all atoms of the signature.
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A model in Alloy means a collection of instances. Instances are binding of
values to variables. Alloy Analyzer finds instances of a model automatically by
assigning values to variables satisfying the constraints defined. Model analysis
involves constraint solving, and the analyzer embodies a SAT solver. It provides
visualization for making sense of solutions and counterexamples it finds [9].

Instructions to Alloy Analyzer to perform its analysis are called commands.
A run command causes the analyzer to search for an instance that witnesses the
consistency of a function or a predicate. A check command causes it to search
for a counterexample to show that an assertion does not hold. Searching for
instances is done within finite bounds, specified by the user as scope. So, when
the search fails, it does not mean that there is no instance satisfying the model
(i.e., the model is inconsistent). Alloy analysis is based on small scope hypothesis,
which says that if we consider all small instances, most flaws will be revealed
[10].

In this paper, when writing Alloy definitions and formulas, we sometimes use
common mathematical symbols instead of Alloy keywords (e.g. ∀ or ∈ symbols
instead of ‘all’ or ‘in’ keywords).

4 Modeling Basic Reo Constructs in Alloy

In this section, we show how primitive constructs in Reo, nodes, channels and
more complex connectors, are modeled in Alloy. We first see how Reo connectors
can be constructed from simpler ones structurally, and then study the behavioral
modeling of connectors. Note that we defer handling context-sensitive behavior
to Sect. 6.

4.1 Modeling Connector Structure

The basic goal of Reo is to formalize the concept of connectors which serve as the
pathways through which components communicate. A connector in turn, is com-
posed of simpler ones, which are ultimately composed of channels. A component
is connected to a connector through a number of externally visible nodes which
we call ports. The two basic concepts in the model are nodes and connectors that
are represented as two Alloy signatures as follows:

sig Node {}
abstract sig Connector {

conns : set Connector ,
ports : set Node

}

According to the above definitions, a node is an atomic concept, but con-
nectors may be constructed recursively from other connectors. The signature
Connector is marked abstract as concrete connectors will be defined as its sub-
signatures. For a connector c, c.conns represents the set of connectors that are
parts of c. This model of constructing connectors resembles the Composite de-
sign pattern [7]. The set c.ports is the set of nodes of c that are accessible from
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outside (i.e., the nodes of c that are not hidden). These nodes can be attached
to the ports of other connectors.

Note that in Alloy, a field of a signature is considered as a relation from that
signature to the type of the field. For example, conns is a relation that relates
each instance of Connector to a set of Connectors (its parts). So, the notations
c.conns and conns [c] are equivalent.

The simplest form of a connector is a channel, defined by the following signa-
ture:

abstract sig Channel extends Connector {
e1, e2 : one Node

}
{ (ports = e1 + e2) ∧ (conns = ∅) }

Each Channel has two fields e1 and e2, each of them is a reference to a single
Node. The signature is defined abstract, as it will be refined later into specific
channels, but common to all channel are two facts: they have two ports (as the
channel ends), and they are atomic connectors, so the conns field is the empty
set. The expression e1 + e2 denotes the set {e1, e2}. Each specific channel type
has a separate signature extending Channel. Normally, the channel types do
not add any ‘structural’ feature to the definition of abstract Channel. We will
consider the behavior of channels later.

sig Sync extends Channel {}
sig Drain extends Channel {}
sig Lossy extends Channel {}
sig Fifo extends Channel {}

Another simple connector defined is a Merger which is used to model merge
nodes with two inputs in Reo. A merger has references to two nodes i1 and i2
as its inputs and a third node o as its output node:

abstract sig Merger extends Connector {
disj i1, i2, o : one Node

}
{ (ports = i1 + i2 + o) ∧ (conns = ∅) }

To illustrate how a composite connector is constructed, we define a simple
connector composed of a FIFO1 channel attached to the end of a synchronous
channel (Fig. 3).

sig SyncFifo extends Connector {
a, b, d : one Node,
s : one Sync, f : one Fifo

} {
a = s.e1

d = f.e2

b = s.e2 ∧ b = f.e1

(conns = s + f) ∧ (ports = a + d)
}
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Note that there are three nodes in an instance of SyncFifo, but only two
of them (a and d) comprise the ports of the connector, and the other one (b)
is ‘hidden’. The SyncFifo connector defined above can be used in constructing
more complex connectors in turn. We will see an example in 5.1.

The above definitions do not constrain the instances to form valid Reo circuits.
A few more facts are required to ensure this. The first one states that a node
that is hidden in a connector cannot be referenced in the enclosing connectors:

fact { ∀ c : Connector | � n : hiddens [c] | n ∈ nodes [∧conns .c] }

The expression hiddens [c] denotes the set of all hidden nodes of c and
nodes [∧conns .c] is the set of all nodes in all connectors that are directly or
indirectly contain c (∧conns is the transitive closure of conns relation). We have
omitted the definition of the two functions hiddens and nodes for brevity.

The other facts constrain the composition of the connectors to form a rooted
tree. First, we define a singleton signature Circuit having a reference to one root
connector:

one sig Circuit { root : one Connector }

The first fact below states that the conns relation is acyclic, and the two
others define Circuit.root as the root of the tree:

fact {
� c : Connector | c ∈ c.∧conns
∀ c : Connector − Circuit .root | c ∈ Circuit .root .∧conns
� c : Connector | Circuit .root ∈ c.conns

}

4.2 Modeling Connector Behavior

To model the behavior of a Reo connector, we use traces of computation which is
a common technique in Alloy. For a Reo circuit, we define a trace of computation
as a sequence of states. In each state, we record the state of FIFO1 buffers as
well as the set of nodes that are to be fired to go to the next state:

sig State {
fire : set Node,
full : set Fifo

}

The set fire is the set of nodes that are to be fired at that state and full
denotes the set of FIFO1 channels with full buffer.

The notion of state in our method is close to the notion of state in constraint
automata. For example, in Fig. 3(a) and 3(b), a simple circuit and its corre-
sponding constraint automaton are shown. Figure 3(c) shows the first five states
of an execution trace as used in our method. Assuming the environment is al-
ways ready to perform write and take operations on nodes a and d respectively,
in states T1, T3, . . ., we have fire = {a, b}, full = {} and in states T2, T4, . . ., we
have fire = {d}, full = {f }.
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fs

a b d

(a)

C1

C2

d a,b

(b)

T1 T2 T3 T4 T5 ...

C1 C2 C1 C2 C1

(c)

Fig. 3. (a) A simple Reo circuit (b) The corresponding constraint automaton with two
states C1 (empty buffer) and C2 (full buffer) (c) An execution trace of the circuit – the
states T2k+1 are corresponding to C1 and the states T2k are corresponding to C2

To model a trace in Alloy, we have reused a standard module util/ordering
which creates a single linear ordering over the atoms of the signature provided
as its input (in our case, State). We use the first and last symbols defined in
util/ordering to refer to the first and last states of a trace respectively. Note that
since Alloy searches for model instances within a bounded scope, the traces are
always bounded.

To model the behavior of each channel, we provide a fact that puts a constraint
on the behavior of the whole circuit. For example, the behavior of the three
simple (stateless) channels is modeled by the following three facts:

fact {
∀ s : State , c : Sync | c.e1 ∈ s.fire ⇔ c.e2 ∈ s.fire
∀ s : State , c : Drain | c.e1 ∈ s.fire ⇔ c.e2 ∈ s.fire
∀ s : State , c : Lossy | c.e2 ∈ s.fire ⇒ c.e1 ∈ s.fire

}

Note that since we have ignored the actual data values, the facts for Sync and
SyncDrain is the same.

The behavior of a merger connector is defined by the following fact:

fact {
∀ s : State , m : Merger | {

¬ (m.i1 ∈ s.fire ∧ m.i2 ∈ s.fire)
m.o ∈ s.fire ⇔ (m.i1 ∈ s.fire ∨ m.i2 ∈ s.fire)

}
}

The behavior of a FIFO1 channel relates two subsequent states of a trace
together. In the following fact, next [s] denotes the next state in the trace, and
last denotes the last state of the trace:

fact {
∀ s : State − last , c : Fifo | {

c.e2 ∈ s.fired ⇒ (c ∈ s.full ∧ c 	∈ next [s].full)
c.e1 ∈ s.fired ⇒ (c 	∈ s.full ∧ c ∈ next [s].full)
(c.e1 	∈ s.fired ∧ c.e2 	∈ s.fired) ⇒ (c ∈ s.full ⇔ c ∈ next [s].full)

}
}
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A primary task of Alloy Analyzer is to assign a value to the fire set for
each state such that the facts corresponding to the channels are satisfied. This
automatically handles nondeterminism in selecting merge inputs.

4.3 Modeling Environment

To analyze the behavior of the circuit, we must be able to specify the behavior of
the environment (i.e, the components attached to the ports of the root connec-
tor). To do this, we add a field env ready to State to specify if the environment
is ready to perform read/take operations on the ports of the root connector.

sig State {
· · ·
env ready : set Node

} {
env ready ⊆ Circuit .root .ports
fire ∩ ports ⊆ env ready

}

The first fact constrains the set env ready to contain only ports of the top-most
connector, and the second one states that only ready ports can be fired.

The modeler can now provide facts to specify how the environment behaves.
Alloy Analyzer automatically assigns values to the set env ready satisfying the
given facts when generating all possible traces.

5 Modeling and Analyzing Reo Circuits

In this section, we show the modeler’s view of our method, that is how a circuit
in Reo can be described and analyzed using the primitives explained in Sect.
4. The modular structure of Alloy allows us to define the basic Reo primitives
in a separate module (we call it Relloy), and let the modules containing circuit
descriptions import those definitions. This way, the circuit module only contains
the description of the circuit along with the properties to be analyzed.

5.1 Describing a Reo Circuit

A Reo circuit is modeled as a signature extending Connector, the same way as
defined SyncFifo in Sect. 4.1 In this section, we study how a complex circuit
can be composed of simpler connectors. Consider the circuit in Fig. 4(a) which
dispatches data from node a to nodes i, j, and k in a round-robin fashion.
Instead of directly modeling the circuit, we use three instances of a simpler part
connected together (Fig. 4(b)).

The complete description of the above connectors in our method is shown in
Fig. 5. The signature RRPart models the connector in Fig. 4(b) and RR models
the whole dispatcher.

The fact paragraph at the end contains two facts. The first fact states that the
circuit root to be analyzed is a connector of type RR. The second fact determines
the set of full FIFO1 channels in the initial state.
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a
b

i j k

o a b

e

c

d

(a) (b)

Fig. 4. (a) A round-robin 3-dispatcher circuit (b) A connector used to construct round-
robin dispatcher

module RoundRobin
open Relloy

sig RRPart extends Connector {
disj a, b, c, d, e : one Node,
f : one Fifo,
r : one Drain,
l : one Lossy,
s : one Sync

} {
conns = f + r + s
ports = a + b + c + d
fifo[a, f, b]
drain[b, r, e]
lossy[d, l, e]
sync[e, s, c]

}
sig RR extends Connector {
disj a, b, i, j, k : one Node,
disj c1, c2, c3 : one RRPart,

s : one Sync
} {

c1.a = c3.b
c2.a = c1.b
c3.a = c2.b
c1.c = i
c2.c = j
c3.c = k
c1.d = b
c2.d = b
c3.d = b
sync[a, s, b]
conns = c1 + c2 + c3 + s
ports = a + i + j + k

}

fact {
Circuit.root in RR
first.full = Circuit.root.c1.f

}

Fig. 5. The description of a round-robin three-dispatcher connector in Alloy

5.2 Analyzing Circuits

To check the correctness of a circuit, we can express the desired properties in
terms of assertions to be checked by the Alloy Analyzer. To provide an assertion,
we can write formulas on the states of nodes and buffers in different states of
the execution trace. For example, to express that in every state, only one of the
buffers is full, we can write the following assertion (the # operator returns the
size of its operand):

assert one_full { all s : State | #s.full = 1 }

The following command makes Alloy Analyzer search for a counterexample
in all possible traces with maximum 10 states:

check one_full for 10 State

In this case, the response of Alloy Analyzer would be ‘No counterexamplefound.
Assertion may be valid.’ indicating the property holds for all traces of length at
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most 10. But if we mistakenly had c3.a = c1.b instead of c3.a = c2.b in the de-
scription of RR, we would get the response ‘Counterexample found. Assertion
is invalid.’. By inspecting the given counterexample, we can find out the source
of the flaw easily.

As another example, assume that we want to check that the data items written
to a are never lost. This means that if a is to be fired in a state, then one of i, j,
or k must be fired in the same state. This is expressed by the following assertion:

∀s : State | a ∈ s.fire ⇒ {i, j, k} ∩ s.fire 	= ∅

Again, we get a counterexample exposing a case in which the components
attached to the ports i, j, and k are slower than the component writing at a.
Hence, there is a state in which node a is ready while none of the three other ports
are ready. In that case, the data written to a will be lost by all three LossySync
channels. To fix this, we must replace the three LossySync channels with a three-
way exclusive router[4], connecting b to node e of RRPart connectors. We have
made this change, by defining a separate connector for exclusive router (and
removing the LossySync channel from RRPart) and has successfully checked the
above property. Due to lack of space, we do not present the Alloy descriptions
here.

6 Handling Context-Sensitive Behavior

In this section, we show how to extend our model to handle the behavior ex-
posed by channels like LossySync which is called context-sensitive behavior. An
example is shown in figure 6.

e

f

a

c

b

g

m d

Fig. 6. An example of a Reo circuit demonstrating context-sensitive behavior

Consider the situation in which the environment is ready to write to both
nodes e and f and is ready to take from b. Node e accepts the data item and
writes it into the buffer. Considering the LossySync f ��� c in isolation, it may
pass the data item to c or lose it. But, the maximal progress property of Reo
requires it to always pass the data, because nodes a and b cannot be fired, and
the merger input g can be fired. Note that the maximal progress is a global
property, and cannot be enforced by adding some constraints to the behavioral
description of the channel types locally.

To handle these cases, we find which nodes cannot be fired in a state, and
force every other node to be fired in that state. In each state, some nodes may
be locally detected as blocked, i.e., they cannot be fired. This may happen in
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four cases: the first endpoint of a full FIFO1, the second endpoint of an empty
FIFO1, the input of a merge that is not selected, and an external port that is
not ready.

pred blocked [s : State , n : Node] {
(∃ c : Fifo | (c ∈ s.full ∧ n = c.e1) ∨ (c 	∈ s.full ∧ n = c.e2)) ∨
(∃ m : Merger | (n = m.i1∨ n = m.i2) ∧ n 	∈ s.fire)
n ∈ Circuit .root .ports − s.env ready

}

As an example, in Fig. 6, and under the assumption that the environment
is ready to write into e and f and read from b, a is the only blocked node.
When a node is blocked, it may block other nodes from being fired, for example,
through channels with synchronous behavior. For each State we define a relation
can block : Node → Node, such that (m, n) ∈ can block means that in that state,
if m is blocked, then n is blocked too. This may be caused by the existence of
a channel with synchronous nature between m and n, like Sync, SyncDrain, or
LossySync. Another case happens between the output node of merger and its
selected input. It is important to not include this relation for the non-selected
input, as it may incorrectly block some other nodes in the circuit. This fact is
the reason for defining can block as a field of State, so that it is computed for
each state separately.

sig State {
fire : set Node,
full : set Fifo,
can block : Node → Node

} {
∀ m, n : Node | m → n ∈ can block ⇔ {

(∃ c : Sync | (c.e1 = m ∧ c.e2 = n) ∨ (c.e1 = n ∧ c.e2 = m)) ∨
(∃ c : Drain | (c.e1 = m ∧ c.e2 = n) ∨ (c.e1 = n ∧ c.e2 = m)) ∨
(∃ c : Lossy | (c.e1 = m ∧ c.e2 = n)) ∨
(∃ c : Merger | (m ∈ fire ∧ input [c, m] ∧ output [c, n]) ∨

(n ∈ fire ∧ input [c, n] ∧ output [c, m]))
}

}

In the above definition, input and output are two helper predicate to test if
node is an input, or is the output of a merger respectively. In our example, the re-
lation can block contains the tuples {(a, b), (b, a), (f, c), (c, g), (g, c), (m, g), (g, m),
(m, b), (b, m)}. Note that the relation is symmetric except for the tuple (f, c)
which is introduced by the LossySync f ��� c.

Now we can define when a node is enabled to be fired: if it is not blocked
itself, and cannot be blocked by any other blocked node in the circuit. This can
be easily checked by getting a transitive closure of can block:

pred enabled [s : State , n : Node] {
¬ blocked [s, n]
� m : Node | blocked [s, m] ∧ m → n ∈ ∧(s.can block)

}
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In the above example, the set of enabled nodes will be {e, f, c, g, m, d}.
Finally, the following fact imposes the maximal progress constraint on the

traces generated:

fact { ∀ s : State − last | s.fire = {n : Node | enabled [s, n]} }

We have implemented the above definitions and facts into the Relloy module,
and have successfully analyzed circuits with context-sensitive behavior (like the
one in the given example).

7 Conclusion and Future Work

We presented a method to model Reo circuits based on relational logic in Al-
loy. The resulting model preserves the original structure of the Reo circuit, and
no complex translation effort is needed. This also makes the circuit description
reasonably readable. Also, we have provided a library of different Reo channels
as an Alloy module that can be reused when describing circuits. Our method
handles basic channel types, compositional construction of more complex con-
nectors, constraints on the environment, and circuits exposing context-sensitive
behavior.

We can use Alloy Analyzer to verify properties on circuits. Properties are
defined in terms of first-order predicates on the state of nodes and buffers in
the execution traces of a circuit. As we can address states in our properties,
along with ‘next’ and ‘previous’ operators and quantifiers, we can verify tempo-
ral properties on the circuit. Because Alloy Analyzer checks the properties on
all possible traces, the properties are closely related to Linear Temporal Logic
(LTL)[12] formulas [10]. More work is needed to precisely evaluate how expres-
sive is this way to model temporal properties.

One can view our method as an implementation of Reo language in Alloy. But
another useful viewpoint is to abstract away Alloy syntax, and view our work
as a starting point to provide a formal semantics for Reo based on relational
logic. More work is needed to formally define the semantics and compare it to
the existing ones.

Our method currently ignores the actual values of data passed through the
channels. Although many ‘coordination’ properties of a circuit can be expressed
without explicitly modeling data values, adding this capability improves the
expressiveness of the model in general.

Another issue to be addressed is scalability. Using Alloy Analyzer, it takes
some time to analyze large connectors. An important observation here is that
the description of the connector structure yields in only one instance. On the
behavior side, once nondeterministic merge inputs are selected and the ready
ports are defined, one can easily compute the can block relation, its transitive
closure, and finally the set of enabled nodes easily. In all these cases, we do not
require solving SAT models. So, we can do parts of the computation in more
efficient languages like Java (like construction of the connector instance from
the description). The integration with Alloy can be done using Alloy API for
Java. This may lead to a big improvement in the performance of analysis.
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Currently, various tools on Reo have been implemented under the Eclipse
platform [6]. Integrating our method with the tool set is another direction in
which this work can be extended. This includes bi-directional transformation
of graphical representation of a circuit to our textual format as both forms are
necessary when working with models of different sizes.
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