
Synchronizing Asynchronous IOCO

Neda Noroozi1,2, Ramtin Khosravi3,
MohammadReza Mousavi1, and Tim Willemse1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Fanap Corporation (IT Subsidiary of Pasargad Bank), Tehran, Iran

3 University of Tehran, Tehran, Iran

Abstract. We present three theorems and their proofs which enable us-
ing synchronous testing techniques such input output conformance test-
ing (IOCO) in order to test implementations only accessible through
asynchronous communication channels. These theorems define when the
synchronous test-cases are sufficient for checking all aspects of confor-
mance that are observable by asynchronous interaction with the system
under test.

1 Introduction

Due to the ubiquitous presence of distributed systems (ranging from distributed
embedded systems to the Internet), it becomes increasingly important to es-
tablish rigorous model-based testing techniques with an asynchronous model of
communication with the implementation under test (IUT). This fact has been
noted by the pioneering pieces work in the area of formal conformance testing,
e.g., see [6, Chapter 5], [9] and [10], and has been addressed extensively by several
researchers in this field ever since [2–5, 11, 12].

A widely accepted model of asynchronous testing assumes a FIFO channel
(or a number of them) as the asynchronous communication medium with the im-
plementation under test and generates test-cases using the algorithm given for
input-output conformance testing (IOCO) [7, 8], or a variant thereof. It is well-
known that not all specifications are amenable to asynchronous testing since they
may feature phenomena (e.g., an internal choice between accepting input and
generating output) that cannot be reliably observed in the asynchronous setting
(e.g., due to unknown delays in the asynchronous setting). In other words, in
order to make sure that test-cases generated from the original specification can
test the IUT by asynchronous interactions and reach verdicts that are mean-
ingful for the original system, either the style of specification, or the test-case
generation (or both) has to be adopted.

Related work In [11, Chapter 8] and [12], for example, both the class of specifi-
cations has been restricted (to the so-called internal choice specifications) and
further the test-case generation algorithm is adapted to generate a restricted
set of test-cases. Then, it is argued (with a proof sketch) that in this setting,
the verdict obtained through asynchronous interaction with the system coincides

with the verdict (using the same set of restricted test-cases) in the synchronous
setting. We give a full proof of this result in Section ?? and report a slight ad-
justment to this result, without which a counter-example is shown to violate the
property.

In [5] a method is presented for generating test-cases from the synchronous
specification that are sound for the asynchronous implementation. The main
idea is to take an IOCO test-case and delay observing output actions before
the next observable quiescent and this will account for the delay caused by the
asynchronous channel. The adjustment proposed in the our paper is inspired by
a restriction imposed on asynchronous specifications in [5, Theorem 1].

In [3, 4] the asynchronous test framework is extended to the setting where
separate test-processes can observer input and output events and relative distin-
guishing power of these settings are compared. Although this framework may be
natural in practice, we avoid following the framework of [3, 4] since our ultimate
goal is to compare asynchronous testing with the standard IOCO framework and
the framework of [3, 4] is notationally very different. For the same reason, we do
not consider the approach of [2], which uses a stamping mechanism attached to
the IUT, thus observing the actual order input and output before being distorted
by the queues.

To summarize, the present paper re-visits the much studied issue of asyn-
chronous testing and formulates and proves some theorems and non-theorem
that show when it is (im)possible to synchronize asynchronous testing, i.e., use
the (synchronous) IOCO test-case generation algorithm in order to test systems
through asynchronous interaction. This guarantees that the verdict obtained
from using IOCO on the synchronous specification coincides with the verdict
obtained from using IOCO (or its asynchronous variant, in case of [11]), on
the asynchronous version of the specification, which is equipped with input and
output queues.

Structure of the paper To this end, after presenting some preliminaries in Sec-
tion 2, we give a full proof of the main result of [11, Chapter 8] and [12] (with
a slight modification) in Section 3. Then, in Section 4, we show that the re-
sults of re-formulate and strengthen the same results in the pure IOCO setting
and show that even under weaker assumptions on the specification, one can re-
cast the results in the IOCO setting. Finally, in Section 5, we show that the
restriction imposed on the specification in Section 4 are not only sufficient to
obtain the results but also necessary and hence characterize the specifications for
which asynchronous testing can be reduced to synchronous testing. The paper
is concluded in Section 6.

2 Preliminaries

In this section, we review some common formal definitions from the literature
of labeled transition systems and input-output conformance testing [8].

II

Specifications, actions and traces Specifications in our approach to model-based
testing are in the form of labeled transition systems (LTSs), defined below.

Definition 1 (LTS). A labeled transition system (LTS) is a 4-tuple M =
(Q,L ∪ {τ},→, q0), where Q is a set of states, L is a finite alphabet, τ /∈ L
is an unobservable action, →⊆ Q× (L∪ {τ})×Q is the transition relation, and
q0 ∈ Q is the initial state.

In LTSs labels are treated uniformly while for testing, it is essential to dis-
tinguish input and output actions; this is achieved in the following definition of
input-output labeled transition systems (IOLTSs).

Definition 2 (IOLTS). An input-output labeled transition system (IOLTS) is
an LTS M = (Q,L ∪ {τ},→, q0), where the alphabet L is partitioned into two
sets LI and LU , representing the input and output alphabets, respectively. The
class of IOLTSs with LI and LU , respectively, as the set of input- and output
alphabets is denoted by IOLTS(LI , LU).

We write q
a−→ q′ rather than (q, a, q′) ∈→; moreover, we write q

a−→ when

q
a−→ q′ for some q, and q

aX−→ when not q
a−→. The transition relation is

generalized as follows:

Definition 3 ((Weak) Transitions and Traces). Given an IOLTS (Q,L ∪
{τ},→, q0) and q, q′, qi ∈ Q, a, ai ∈ L ∪ {τ} and σ ∈ L∗, the notions of (weak)
transition and trace are defined as follows.

1. q
ε

=⇒ q′ =def (q = q′) ∨ ∃q0, ..., qn • (q = q0
τ−→ q1 ∧ ... ∧ qn−1

τ−→ qn = q′)
2. q

a
=⇒ q′ =def ∃q1, q2 • q

ε
=⇒ q1

a−→ q2
ε

=⇒ q′

3. q
a1...an=⇒ =def ∃q0, ..., qn • q = q0

a1=⇒ q1...qn−1
an=⇒ qn = q′

In line with our notation for transitions, we write q
σ

=⇒ if there is a q′ such that
q

σ
=⇒ q′, and q

σX=⇒ when no q′ exists such that q
σ

=⇒ q′.

Definition 4 (Initial and After-States). Given an IOLTS (Q,L ∪ {τ},−→
, q0), some q ∈ Q, S ⊆ Q, we define:

1. init(q) =def {a | q
a−→}, and we set init(S) =def

⋃
q∈S init(q)

2. Sinit(q) =def {a|q
a

=⇒}, and we define Sinit(S) =def

⋃
q∈S Sinit(q)

A state in an LTS is said to diverge if it is the start of an infinite sequence of
τ -labeled transitions.

Quiescence, defined below, is an essential notion for conformance testing; it
characterizes a system state that cannot produce outputs and is stable, i.e., it
cannot evolve to another state by performing a silent action.

Definition 5 (Quiescence (under queue context)).
A state q ∈ Q is called quiescent, denoted by δ(q), when init(q) ⊆ LI ; it is

called quiescent under queue context, denoted by δq(q), iff Sinit(q) ⊆ LI .

III

The notion of quiescence under queue context refers to the asynchronous
setting where quiescence cannot be observed directly (i.e., the tester cannot ob-
serve whether the system under test is engaged in some internal transitions or
has come to a standstill) and hence the system is considered quiescent when it
cannot show any observable output even after performing some internal tran-
sitions. In practice, this is implemented by a timeout mechanism which is set
to the maximum waiting time before producing outputs. By the same token, in
an asynchronous setting it becomes impossible to distinguish divergence from
quiescence; we re-visit this issue in our proofs of synchronizing asynchronous
conformance testing.

Next, we define the notion of test-case, which is a tree-shaped IOLTS pre-
scribing when an input should be fed to the implementation under test and
when its possible outputs should be observed leading to a leaf of the tree labeled
with the pass- or the fail verdict. In a test case, the observation of quiescence is
modeled using a θ symbol.

Definition 6 (Test case). Given an input alphabet LI and an output alphabet
LU , a test case t is an IOLTS t = 〈Q,LU ∪LI ∪ {θ}, T, q0〉, where Q is a finite
set of states reachable from q0 ∈ Q containing two distinct terminal states pass
and fail, θ is a fresh label (θ /∈ LI ∪LU ∪{τ}), T is an acyclic and deterministic
transition relation where pass and fail states appear only as targets of transitions
labeled by an element of LU ∪{θ} and for each non-terminal state q ∈ Q, it holds
that init(q) = LU ∪ {a} for some a ∈ LI ∪ {θ}.TW: this definition

does not sound right
to me; why omit θ in
one case? after all, it
is an observed out-
put

The class of test cases for the sets of LI of input labels and LU of output
labels, is denoted by TTS(LU , LI) (note that the order of input and output are
reversed: outputs of the system are inputs of the test-case and vice versa). A
test suite T is defined a set of a test cases, i.e. T ⊆ TTS(LU , LI).

Definition 7 (Synchronous execution). Given a test case t ∈ TTS(LU , LI),
an IUT i ∈ IOLTS(LI , LU), and let a ∈ L, then the synchronous test case
execution operator e| is defined by the following inference rules:

i
τ→ i′

(R1)

te|i τ−→ te|i′
t

a−→ t′, i
a−→ i′

(R2)

te|i a−→ te|i′
t

θ−→ t′, δ(i)
(R3)

te|i θ−→ t′e|i

Definition 8 (passes). Given an implementation i ∈ IOLTS(LI , LU) and a

test case t ∈ TTS(LU , LI), then i passes t⇔def ∀σ ∈ (L∪ {θ})∗,∀i′ • te|i σX=⇒
faile|i′.

3 AIOCO Settings

In order to perform conformance testing in the asynchronous setting, in [11] and
[12], both the class of specifications and test cases have been restricted to the
so-called internal choice specifications. Then, it is argued (with a proof sketch)
that in this setting, the verdict obtained through asynchronous interaction with
the system coincides with the verdict (using the same set of restricted test-cases)

IV

in the synchronous setting. In this section, we re-visit the approach of [11] and
[12], give full proof of their main result and point out a slight imprecision in it.

3.1 Internal Choice Specifications

Asynchronous communication delays obscure the observation of the tester; for
example, the tester cannot precisely establish when the input sent to the system
is actually consumed by it. Hence, if the specification produces different outputs
based on the exact point of time when an input is consumed (so-called external-
choice), the verdict of a synchronous tester may be different from that of an
asynchronous one. Hence, in [11, 12], the class of specifications is restricted to
those in which the choice about the exact moment of input is not determined by
the tester but by the specification itself, leading to internal-choice specifications.

Example 1. Figure 1 shows the difference between internal and external choice
specifications. In the IOLTS m0, there is a race between input and output. Thus
the tester controls the test execution and based on the exact moment of perform-
ing the input transition, can decide whether the appropriate output is produced
or not (i.e., it rejects an implementation which produces a 1! output after feeding
an a? to the system). This exact moment of time is not visible in asynchronous
testing and hence, asynchronous testing may accept an implementation which is
rejected by the synchronous testing (i.e., the tester may provide an a? to the sys-
tem, but before its consumption, the system may produce a 1! output). Although
IOLTS n0 does not feature an immediate race between input and output actions,
the tester can rule out the possibility of output 1! by providing input a?. Again
this kind of control is not available to an asynchronous tester and hence this
kind of specification falls beyond the internal-choice category. All other IOLTS’s
depicted in Figure 1 fall into the internal-choice category. For example, in the
IOLTS starting from i0, the tester can rule out the possibility of being in the
initial state by observing quiescence; in that case the user can make sure that
by providing an input to the system it will be consumed by the system and no
output is allowed to be produced.

τ 1!

a?

τ τ

a? 1!

i0 r0
a? 1!

m0

τ a?

1!

n0
a? a?

a? 1!

e0

a?1!

a?

τ 1!
τ

τ

c0

Fig. 1. Input-output labeled transition systems with different choice

These observations has led into the the following definition of internal-choice
specification in [11, 12].

V

Definition 9. A given LTS M = (Q,LI ∪LU ∪{τ},→, q0) is an internal choice
LTSu(LI , LU), if input actions are enabled only in quiescent states, i.e. ∀q ∈
Q, (∃a ∈ LI • a ∈ init(q)) implies δ(q).

By observing quiescence before any input, the tester will provide an input for
the implementation only when it is ready to accept it. Hence implementation
doesn’t need to be assumed input enabled at any state. It is sufficient that
implementation accept all inputs at states which the quiescence is observable.we haven’t said any-

thing about input
enabledness yet!
So this paragraph
had better to be
rephrased, maybe

Definition 10. An internal choice input output transition system
(IOTSu(LI , LU)) is an internal choice IOLTSu(LI , LU) where all input
actions are enabled (possibly preceded by τ transitions) in quiescent states,

∀a ∈ LI ,∀q ∈ Q • (δ(q) implies q
a−→).

θ

a!

θ 1?

passfail

t0
θ

a!

θ 1?

pass fail

t′0
1?

pass

Fig. 2. An example of internal choice test case

Definition 11 (Internal choice test case). An internal choice test case
(TTSu) is an TTS M = 〈Q,LU ∪ LI ∪ {θ}, T, q0〉, where any state q ∈ Q
with init(q) ⊆ LI is only reachable by θ-labeled transitions.

Example 2. The left and right IOLTS’s in figure 2 show internal test cases of
IOLTSu(LI , LU) c0 and i0 in figure 1 respectively. Outputs (inputs of imple-
mentation) are enabled only in states reachable by θ-transitions.

Property 1. In an internal choice test execution, following properties always hold:

1. t
σ.a−→ t′ and a ∈ LI implies that ∃σ′ • σ = σ′.θ.

2. te|i σ.a−→ t′e|i′ and a ∈ LI implies that ∃σ′ • σ = σ′.θ.

3.2 Asynchronous Specifications

Asynchronous communication, as mentioned in [6, Chapter 5], can be simulated
by composition of two FIFO channels with implementation, one for input and
one for output. Tester puts its stimulus in the input queue and get the outputs of
the implementation from the output queue. Also, communication between tester
and implementation equipped with FIFO queues is done synchronously. In the
following definition, the behavior of FIFO channels are formally defined.

VI

Definition 12 (Queue operator). Let σi ∈ L∗I and σu ∈ L∗U , then the unary
queue operator [σu�.�σi]: LTS(LI , LU) → LTS(LI , LU) is defined by the fol-
lowing two axioms

[σu�S�σi]
a→ [σu�S�σ∧i a], a ∈ LI (A1)

[x∧σu�S�σi]
x→ [σu�S�σi], x ∈ LU (A2)

and by the following inference rules:

S
τ−→ S′

(I1)

[σu�S�σi]
τ−→ [σu�S

′�σi]

S
a−→ S′, a ∈ LI

(I2)

[σu�S�a∧σi]
τ−→ [σu�S

′�σi]

S
x−→ S′, x ∈ LU

(I3)

[σu�S�σi]
τ−→ [σ∧ux�S

′�σi]

The initial state of a queue context containing an LTS S is given byQ(S) =def

[〈〉�S�〈〉].

Property 2. Let i, i′ ∈ IOTS(LI , LU), t, t′ ∈ TTS(LU , LI) and σ ∈ (L ∪ {θ})∗
then,

1. i
σ

=⇒ i′ implies Q(i)
σ

=⇒ Q(i′)
2. te|i σ

=⇒ t′e|i′ implies te|Q(i)
σ

=⇒ t′e|Q(i′)
3. Sinit(te|i) = Sinit(te|Q(i)).

Proposition 1. For each i, i′ ∈ IOTS(LI , LU), t ∈ TTS(LU , LI), σi, σ
′
i ∈ LI

and σu, σ
′
u ∈ LU the following statements hold:

1. i
ε

=⇒ i′ iff te|i ε
=⇒ te|i′ (R∗1)

2. [σu�S�σi]
σ′i=⇒ [σu�S�σi.σ′i]

, σ′i ∈ L∗I (A∗1).

3. [σ′u.σu�S�σi]
σ′u=⇒ [σu�S�σi], σ

′
u ∈ LU (A∗2).

4. [σu�i�σi]
ε

=⇒ [σu�i
′�σi] iff i

ε
=⇒ i′(I∗1).

5. [σu�i�σi.σ′i]
ε

=⇒ [σu�i
′�σ′i] iff i

σi=⇒ i′(I∗2).

6. [σu�i�σi]
ε

=⇒ [σu.σ′u�i
′�σi] iff i

σ′u=⇒ i′(I∗3).

Corollary 1. For each i, i′ ∈ IOTS(LI , LU), t, t′ ∈ TTS(LU , LI), and x ∈
{LU ∪ θ}, if te|Q(i)

x
=⇒ t′e|Q(i′), then the following two statements hold:

1. t
x−→ t′ and

2. Q(i)
x

=⇒ Q(i′). Moreover, if x = θ, then δq(Q(i)) and δq(Q(i′)) are con-
cluded.

Corollary 2. For each i, i′ ∈ IOTS(LI , LU) and t, t′ ∈ TTS(LU , LI),

te|Q(i)
a

=⇒ t′e|Q(i′) ∧ a ∈ LI concludes the following:

1. t
a−→ t′

2. Q(i)
a

=⇒ Q(i′). Moreover, if i ∈ IOTSu(LI , LU), then ∃i′′ ∈
IOTSu(LI , LU) • i ε

=⇒ i′′
a

=⇒ i′ ∧ δ(i′′).

VII

3.3 Synchronizing Theorem for AIOCO

It is argued in [12, 5], if an input is provided to the IUT only after observing
quiescence (i.e., in a stable state), the queue cannot distort the order of obser-
vations anymore. Hence, a subset of synchronous test-cases, namely those which
only provide an input after observing quiescence, are sufficient for testing asyn-
chronous systems. This is summarized in the following theorem from [12, 11]
(and with a slightly different formulation in [5]):

Theorem 1 (non-theorem). Let i ∈ IOTSu(LI , LU) and t ∈ TTSu(LU , LI),
then i passes t⇐⇒ Q(i) passes t.

The theorem however, does not hold in its full generality as illustrated by the
following example.

Example 3. Running test case t in figure 2 asynchronously with c=
IOTSu(LI , LU) in figure 1 may result in fail, though c passes t. In fact
IOTSu(LI , LU) c has a τ− loop which is considered quiescence in queue
context(δq(c)).

By omitting diverging IOLTS from the internal choice specifications, we restrict
the domain of the internal choice specifications to be able to prove the theorem
given in [12, 11].

Theorem 2. Let i ∈ IOTSu(LI , LU) and t ∈ TTSu(LU , LI) and i doesn’t
diverge then i passes t⇐⇒ Q(i) passes t.

Unfortunately, only a proof sketch is provided in [12, 11] for Theorem 1 and our
order of business in this section is to give a full proof for its corrected version,
Theorem 4. (In [5] only the theorem is mentioned without a formal proof.) To
this end, we need a number of auxiliary lemmata and corollaries, given below.

In the following lemma, we show that if δq(Q(i)), then either i is a quiescent
state or i can reach a quiescent state by taking finite τ -steps. As we mentioned in
Example 3, if i can diverge, then Q(i) is considered quiescent, though i neither
is quiescent or reach a quiescent state. This may lead to wrong verdict in the
test execution.

Lemma 1. Let i ∈ IOTSu(LI , LU), then δq(Q(i)) implies that ∃i′ ∈
IOTSu(LI , LU) such that i

ε
=⇒ i′ ∧ δ(i′)

Proposition 2. Let s, s′ ∈ IOTSu(LI , LU), TTSu Tu = 〈Q,LU ∪ LI ∪
{θ}, T, q0〉, t, t′ ∈ Q and σ ∈ (L ∪ {θ})∗. Then te|Q(s)

σ
=⇒ t′e|[σu�s

′�σi] im-

plies that there exists a s′′ ∈ IOTSu(LI , LU) such that te|Q(s)
σ

=⇒ t′e|Q(s′′)

Corollary 3. Let s, s′ ∈ IOTSu(LI , LU), TTSu Tu = 〈Q,LU ∪ LI ∪
{θ}, T, q0〉, t, t′ ∈ Q and σ ∈ (L ∪ {θ})∗. Then te|Q(s)

σ
=⇒ t′e|Q(s′) and

σ = σ′.x with σ ∈ (L ∪ {θ})∗ and x ∈ (L ∪ {θ}) implies that there exist a

s′′ ∈ IOTSu(LI , LU) and t′′ ∈ Q such that te|Q(s)
σ′

=⇒ t′′e|Q(s′′)
x

=⇒ t′e|Q(s′).

VIII

Lemma 2. Let s, s′ ∈ IOTSu(LI , LU), TTSu Tu = 〈Q,LU ∪ LI ∪
{θ}, T, q0〉, t, t′ ∈ Q and σ ∈ (L ∪ {θ})∗. Then te|Q(s)

σ
=⇒ t′e|Q(s′) implies that

there exists a non-empty subset of (s′ after ε) like S such that ∀q ∈ S • te|s σ
=⇒

t′e|q ∧ Sinit(t′e|Q(s′)) =
⋃
q∈S Sinit(t′e|q) .

Proof. We prove this lemma by induction on the length of σ (excluding tau-
transition). Assume for the induction basis that the length of σ is 0; thus it fol-

lows from the item 4 in Proposition 1 that s
ε

=⇒ s′. We claim S = {q|s′ ε
=⇒ q}.

It follows from the item 1 in Proposition 1 that ∀q ∈ S we have te|s ε
=⇒ te|s′

and te|s′ ε
=⇒ te|q. Combination of the two transition culminate in te|s ε

=⇒ te|q
which is the first property of S and Sinit(te|Q(s′)) =

⋃
q∈S Sinit(te|q) is con-

cluded from item 2 in Definition 4 as well. Thus S holds the two properties
which was to be shown. For the induction step, assume that the thesis holds
for all σ with length n − 1 or less and length of σ is n. It follows from the
item 3 in Definition 3 and Corollary 3 that there exist in−1 ∈ IOTSu(LI , LU),
a t′n−1 ∈ TTSu(LU , LI) and σn−1 ∈ (L ∪ θ)∗ and x ∈ (L ∪ θ) such that

σn = σn−1.x and te|Q(s)
σn−1
=⇒ t′n−1e|Q(in−1)

x
=⇒ t′ne|Q(s′). Induction hypoth-

esis follows that ∃Sn−1 ⊆ (i′n−1 after ε) • (∀q ∈ Sn−1 • te|s
σn−1
=⇒ t′n−1e|qn−1)

and Sinit(t′n−1e|Q(i′n−1)) =
⋃
q∈Sn−1

Sinit(t′n−1e|q). We distinguish three cases,
based on the type of x: either it is θ, an input action or an output action.

x = θ Corollary 1 and t′n−1e|Q(i′n−1)
θ

=⇒ and Lemma 1 conclude that there exists

an i′′ ∈ IOTSu(LI , LU) such that i′n−1
ε

=⇒ s′
ε

=⇒ i′′ and i′′ is quiescent. We

claim that Sn = {q ∈ (Sn−1 after ε)|s′ ε
=⇒ q ∧ δ(q)}. Definition of Sinit()

(item 2 in Definition 4) results all member of Sn−1 are either quiescent or
leading to a quiescent state after some τ steps, thus Sn is not empty and
also Sn ⊆ Sn−1. It is concluded from induction hypothesis that ∀q ∈ Sn∃q′ ∈
Sn−1•te|s

σn−1
=⇒ t′n−1e|q′

ε
=⇒ t′n−1e|q

θ−→ t′e|q is concluded. Combination of the

two transition shows that ∀q ∈ Sn • te|s
σn=⇒ t′ne|q. Hence the first property

is held by S. Q(s′) is quiescent (δq(Q(s′))), thus Sinit(t′e|Q(s′)) = LI ∪ {θ}.
On the other hand, definition of Sinit() culminates in Sinit(t′e|q) = LI∪{θ}
for all member of S. Thus init(t′e|Q(s′)) =

⋃
q∈Sn init(t′e|q) and the second

property is held by S as well.
x ∈ LI It follows from induction hypothesis and Definition 10 that all member of

Sn−1 are quiescent, thus they can perform any input action. We claim that

Sn = {q| q′ x
=⇒ q ∧ q′ ∈ Sn−1 ∧ s′

ε
=⇒ q}. It follows from Corollary

1 that ∃i′′ ∈ IOTSu(LI , LU) • in−1
ε

=⇒ i′′
x

=⇒ s′ ∧ δ(i′′). According to
the definitions of Sn−1 and Sn, it is clear that i′′ ∈ Sn−1 and i′n ∈ Sn,
thus Sn cannot be empty and it has at least one member. Induction hy-

pothesis results that ∀q ∈ Sn∃q′ ∈ Sn−1 • te|s
σn−1
=⇒ t′n−1e|q′

x
=⇒ t′e|q,

thus the first property is held by Sn. Since s′ ∈ Sn, it is clear that
Sinit(t′e|s′) ⊆

⋃
q∈S Sinit(t′e|q). For each member of S such as q ∈ Sn,

we have Sinit(t′e|q) ⊆ Sinit(t′e|s′), thus
⋃
q∈S Sinit(t′e|q) ⊆ Sinit(t′e|s′) as

well. These observations lead to Sinit(t′e|s′) =
⋃
q∈S Sinit(t′e|q). Property 2

IX

leads to Sinit(t′e|Q(s′)) =
⋃
q∈S Sinit(t′e|q). Thus Sn holds the two required

properties which was to be shown.
x ∈ LU We claim that Sn = {q| q′ x

=⇒ q ∧ q′ ∈ Sn−1 ∧ s′
ε

=⇒ q}. It follows from the

induction hypothesis that ∀q ∈ Sn∃q′ ∈ Sn−1 • te|s
σn−1
=⇒ t′n−1e|q′

x
=⇒ t′e|q.

Hence Sn holds the first property. By Corollary 1 we know that ∃i′′ ∈
IOTSu(LI , LU) • i′n−1

ε
=⇒ i′′

x
=⇒ i′n, thus i′′ ∈ Sn−1 and subsequently

s′ ∈ Sn. These results show that S is not empty and it has at least one
member. Since s′ ∈ Sn, it is clear that Sinit(t′e|s′) ⊆

⋃
q∈S Sinit(t′e|q).

For each member of S such as q ∈, we have Sinit(t′e|q) ⊆ Sinit(t′e|s′),
thus

⋃
q∈S Sinit(t′e|q) ⊆ Sinit(t′e|s′) as well. These observations lead to

Sinit(t′e|s′) =
⋃
q∈S Sinit(t′e|q). Property 2 leads to Sinit(t′e|Q(s′)) =⋃

q∈S Sinit(t′e|q). Thus Sn holds the two required properties which was to
be shown.

Using the lemmas given above we are able to provide the proof of Theorem
4 as follows.
Proof of Theorem 4. We prove each implication by contradiction method.

⇒ Assume, towards a contradiction, that i passes t doesn’t imply that
Q(i) passes t. It follows from Definition 8 that ∀σ ∈ (L ∪ {θ})∗∀i′ ∈
IOTSu(LI , LU) • te|i σX=⇒ faile|i′ and ∃σ′ ∈ (L ∪ θ)∗∃i′′ ∈ IOTSu(LI , LU) •
te|Q(i)

σ′
=⇒ faile|i′′. Corollary 3 follows te|Q(i)

σ′′
=⇒ t′e|Q(i′)

x
=⇒ faile|i′′, with

σ′′ ∈ (L ∪ {θ})∗ and σ′ = σ′′.x. According to Definition 6, we know that a
test case only by observing either an output action or θ reaches fail state,
thus x is either an output or θ. Corollary 1 results in t′

x−→ fail. Lemma 2

concludes that ∃S ⊆ (i′ after ε) • ∀q ∈ S • te|i σ′′
=⇒ t′e|q ∧ Sinit(t′e|Q(i′)) ⊆⋃

q∈S Sinit(t′e|q). Thus there must exist an s ∈ S such that t′e|s x
=⇒. Ac-

cording to the previous observation t
x−→ fail. Hence there exists a path

leading te|i to faile|i′ state and this is in contradictory to our assumption
that i passes t.

⇐ proof of the left implication is almost identical to the right implication.
Assume, towards a contradiction that Q(i) passes t doesn’t imply that
i passes t. It follows from Definition 8 ∀σ ∈ (L∪ θ)∗∀i′ ∈ IOTSu(LI , LU) •
te|Q(i)

σX=⇒ faile|i′ ∧ ∃σ′ ∈ (L ∪ θ)∗∃i′′ ∈ IOTSu(LI , LU) • te|i σ′
=⇒ faile|i′′.

Property 2 shows the behavior of asynchronous context includes the behavior

of synchronous context, thus te|i σ′
=⇒ faile|i′′ results in te|Q(i)

σ′
=⇒ faile|Q(i′′).

Hence there is a path leading te|Q(i) to faile|i′ and this contradicts our as-
sumption that Q(i) passes t.

�

4 IOCO Settings

In this section, we aim at re-casting the results of the previous section to the
setting with the original IOCO test-case generation algorithm. We first define

X

IOCO and its test-case generation algorithm below and then show that the re-
sults of the previous section cannot be trivially generalized to the IOCO-setting.
Then using an approach inspired by [6, Chapter 5] and [5], we show how to
re-formulate Theorem in this setting.

4.1 Specifications and Test Cases

Input output labeled transition systems (IOLTS) are allowed to under-specify the
behavior of a system; this is achieved by selectively omitting input actions in the
behavioral model. The testing hypothesis underlying the IOCO theory, however,
states that implementations are always input enabled. Formally, implementations
range over input-output transition systems, formally defined below.

Definition 13 (IOTS). An input-output transition system (IOTS) is an
IOLTS in which all input actions are enabled (possibly preceded by τ -transitions)
in all states. The IOTS subset of IOLTS(LI , LU) is denoted by IOTS(LI , LU).

Informally, the ioco relation states that an implementation shown by an IOTS
conforms a given specification modeled in IOLTS iff the observable behaviors
of an implementation are also valid observable behaviors of the specification.
In the context of IOCO, the observable behaviors are essentially traces, called
suspension traces, consisting of inputs, outputs and observations of quiescence.
For a given set of states Q and a transition relation →⊆ Q × (L ∪ {τ}) × Q,
suspension traces are defined through an auxiliary transition relation =⇒δ⊆
Q× (L ∪ {δ}) ∗ ×Q, specified through the following deduction rules:

q
ε

=⇒δ q

q
σ

=⇒δ q
′ δ(q′)

q
σδ

=⇒δ q
′

q
σ

=⇒δ q
′′ q′′

x
=⇒ q′

q
σx
=⇒δ q

′

Definition 14 (Suspension traces). Assuming an IOLTS (Q,L∪{τ},→, q0),

the suspension traces of state q ∈ Q are Straces(q) =def {σ ∈ L∗δ |q
σ

=⇒δ}.

Definition 15. Given an IOLTS (Q,L∪{τ},−→, q0), some q ∈ Q, S ⊆ Q, a ∈
L and σ ∈ (L ∪ {δ})∗, we define:

1. out(q) =def {a ∈ LU |q
a−→}∪{δ|δ(q)}, and we set out(S) =def

⋃
q∈S out(q)

2. q afterσ =def {q′|q
σ

=⇒δ q
′}, and we set S afterσ =def

⋃
q∈S q afterσ

Definition 16 (IOCO). Let i ∈ IOTS(LI , LU) and s ∈ LTS(LI , LU) then
i ioco s⇐⇒def ∀σ ∈ Straces(s) • out(iafterσ) ⊆ out(safterσ).

Algorithm 17 (IOCO test case generation) Let s ∈ LTS(LI , LU) be a
specification, and let S initially be S = safter ε.
A test case t ∈ TTS(LU , LI) is obtained from a non-empty set of states S
by a finite number of recursive applications of one of the following three non-
deterministic choices:

1. t :=pass

XI

2. t := a; ta
�Σ{xj ;fail|xj ∈ LU , xj /∈ out(S)}
�Σ{xi; txi |xi ∈ LU , xi ∈ out(S)}
where a ∈ LI such that S after a 6= ∅, ta is obtained by recursively applying
the algorithm for the set of states S after a, and for each xi ∈ out(S), txi

is
obtained by recursively applying the algorithm for the set of states S afterxi.

3. t := Σ{xj ;fail|xj ∈ LU , xj /∈ out(S)}
�Σ{θ;fail|δ /∈ out(S)}
�Σ{xi; txi

|xi ∈ LU , xi ∈ out(S)}
�Σ{θ; tθ|δ ∈ out(S)}
where for each xi ∈ out(S), txi

is obtained by recursively applying the algo-
rithm for the set of states S afterxi and tθ is obtained by recursively applying
the algorithm for the set of states S after δ.

a!

θ 1?

pass fail

t′′0
1?

pass

Fig. 3. An example of IOCO test case

Example 4. Figure 3 shows a test case for IOLTS i0 in Figure 1 which is gener-
ated according to ioco test case generation algorithm(Algorithm 17). Although
IOLTS i0 is internal choice, test case t0 in Figure 3 feeds input a to the im-
plementation without observing quiescence despite of test case t′0 in Figure 2.
Consider sequence a?.1! which leads t0 to fail state. In queue context, the exe-

cution t0e|Q(i0)
ε

=⇒ t0e|[1�i1�ε]
a?−→ t1e|[1�i1�a]

1!−→ faile|[ε�i1�a] is possible
which leads to fail state but a?.1! /∈ Straces(t0e|e0). Hence as we can see in this
example, Theorem 4 cannot be generalized to the IOCO-setting.

4.2 Synchronizing Theorem for IOCO

In this section, we investigate specifications whose synchronous IOCO test cases
are sound for asynchronous execution as well. To this end, we first consider the
relation between traces of system and its queue context’s. In fact, traces in queue
context are reordered in respect to their original one by preceding input actions
to output actions.

Definition 18 (Delay relation).

1. The relation @ ⊆ L∗ × L∗ is defined as the smallest relation such that:

XII

(a) if σ1, σ2 ∈ L∗I , then σ1@σ2 =def σ1 � σ2, where � denotes the trace-
prefix pre-order,

(b) if σ1 = ρ1.x1.σ
′
1, σ2 = ρ2.x2.σ

′
2, with ρ1, ρ2 ∈ L∗I , x1, x2 ∈ LU , and

σ′1, σ
′
2 ∈ L∗, then σ1@σ2 =def ρ1 � ρ2 and x1 = x2 and σ′1@(ρ2 \ ρ1).σ′2

2. if σ1@σ2, then the operation \\ is defined by

(a) if σ1, σ2 ∈ L∗I , then σ2 \\σ1 =def σ2 \ σ1
(b) if σ1 = ρ1.x1.σ

′
1, σ2 = ρ2.x2.σ

′
2, with ρ1, ρ2 ∈ L∗I , x1, x2 ∈ LU , and

σ′1, σ
′
2 ∈ L∗, then σ2 \\σ1 =def (ρ2 \ ρ1).σ′2 \\σ′1

Definition 19 (Fixed Delay relation). The relation |@| ⊆ L∗ ×L∗ is defined
as if σ1, σ2 ∈ L∗ and σ1|@|σ2 then σ1@σ2 and |σ1| = |σ2|.

Corollary 4. Let S ∈ IOLTS(LI , LU) and σ1, σ2 ∈ (LI ∪ LU)∗, then

1. σ1@σ2 and σ1 ∈ traces(S) imply σ2 ∈ traces(Q(S))
2. σ1@σ2 and σ1 ∈ traces(Q(S)) imply σ2 ∈ traces(Q(S))
3. σ2 ∈ traces(Q(S)) implies that ∃σ1 ∈ traces(S) • σ1@σ2

Corollary 4.2 expresses that traces(Q(S)) is right-closed with respect to re-
lation @.

Definition 20 ((Fixed) Delay right-closure). Set s is (fixed) delayed right-
closed if σ1@σ2 (σ1|@|σ2), with σ1, σ2 ∈ L∗ then σ1 ∈ S implies σ2 ∈ S.

Definition 21 ((Fixed) Delay right-closed IOLTS). A given
LTS M = (Q,LI

⋃
LU ∪ {τ, δ}) is a (fixed) delay-right-closed

(LTS|@|(LI , LU))LTS@(LI , LU), if ∀q ∈ Q∀σ ∈ Straces(q), (∃x ∈ LU , a ∈
LI • x ∈ init(q afterσ)∧a ∈ init(q afterσ)) implies Straces((q afterσ)) is
(fixed) delay right-closed.

Definition 22 ((Fixed) Delay right-closed IOTS). A delay-right-closed
input output transition system IOTS@(LI , LU), is a (fixed) delay-right-closed
(IOLTS|@|(LI , LU)) IOLTS@(LI , LU) where all input action is enabled (possi-
bly preceded by τ -transition) in all states.

1!

1!

a?

a?

2!

2!

s0
1!

2!

a?

b?

2!

r0

b?

b?

b?

1!

2!

Fig. 4. Examples of delayed right-closed IOLTS

XIII

Example 5. Figure 4 shows two IOLTS for LI = {a, b} and
LU = {1, 2} as input and output alphabet respectively. In IOLTS
s0, {a, b} ⊆ init(s0 after ε) and x ∈ init(s0 after ε) as well. Also,
Straces(s0 after ε) = {(b?)∗1!(b?)∗a?2!, (b?)∗a?1!, (b?)∗a?2!} and due to
Definition 20, Straces(s0 after ε) is fixed delayed right-closed. Thus IOLTS s is
fixed delay right-closed IOLTS|@|. Similarly, IOLTS r is IOLTS|@| too.

As stated in the following theorem, the results of test execution of an IOCO
test case with an IOTS@ implementation are same in both synchronous and
asynchronous environment.

Theorem 3. i ∈ IOTS@, t ∈ TTSioco then i passes t⇐⇒ Q(i) passes t.

To prove this theorem we first show, as expressed in the following lemma, that
i and its queue context, Q(i) have a unique suspension traces set.

Lemma 3. Let LTS M = (Q,LI ∪LU ∪{τ}) ⊆ IOTS@(LI , LU) and i ∈ Q and
σ ∈ (LI ∪ LU)∗, then σ ∈ (StracesQ(i)) implies σ ∈ Straces(i).

Proof. The proof is given by induction on the number of output actions in σ.
Assume, for the induction basis, σ ∈ L∗I . It follows from Corollary 4.3 that there
exists a σ1 ∈ Straces(i) such that σ1@σ. Due to Definition 18, σ = σ1.ρi with
ρi ∈ L∗I . Since i is input-enabled, ρi ∈ Straces(iafterσ1). Thus σ ∈ Straces(i).
For the induction step, assume that the thesis holds for all σ with n− 1 or less
output actions. Suppose that σ = ρ.x.σ′ with ρ ∈ L∗I , x ∈ LU , σ

′ ∈ L∗ and
the number of output actions in σ is equal to n. It follows from Corollary 4.3
there exists a σ1 ∈ Straces(i) such that σ1@σ. From Definition 18 we know that
σ1 = ρ1.x.σ

′
1 with ρ1 ∈ L∗I , σ1 ∈ L∗ and σ′1@(ρ \ ρ1)σ′. Distinguish between

ρ \ ρ1 = ε and ρ \ ρ1 6= ε.

ρ \ ρ1 = ε In this case, no input is preceded to output action x, thus there exists an

i′ such that Q(i)
ρ.x
=⇒ Q(i′)

σ′
=⇒. Thus σ′ ∈ Straces(Q(i′)) with one output

action less than σ. It follows from induction hypothesis that σ′ ∈ Straces(i′).
Also, it is concluded from the first observation(ρ.x is not a delayed sequence)

that i
ρ.x
=⇒ i′. Thus i

ρ.x
=⇒ i′

σ′
=⇒, or in other words (σ = ρ.xσ′) ∈ Straces(i)

which was to be shown.
ρ \ ρ1 6= ε The sequence σ can be written as ρ1(ρ \ ρ1).x.σ′. Since ρ \ ρ1 6= ε, ∃a ∈ LI

such that ρ \ ρ1 = a.σ∗i with σ∗i ∈ LI . Thus a ∈ init(iafter ρ1). It is
concluded from sequence σ1 that x ∈ init(iafter ρ1). According to Definition
22, (iafter ρ1) is delay-closed-right. Thus σ′1 ∈ Straces(iafter ρ1) implies
if σ′1@σd then σd ∈ Straces(iafter ρ1). It follows from σ′1@(ρ \ ρ1)σ′ that
x.σ′1@x.(ρ\ρ1)σ′. From Definition 18 we know that x.(ρ\ρ1)σ′@(ρ\ρ1)x.σ′

as well. Thus the two last observations and transitivity property of relation
@, result x.σ′1@(ρ \ ρ1)x.σ′. Hence (ρ \ ρ1)x.σ′ ∈ Straces(iafter ρ1) which
culminates in ρ1(ρ \ ρ1)x.σ′ ∈ Straces(i). Thus σ ∈ Straces(i).

Proof of Theorem 3. Using the lemma given above, the proof of theorem becomes
straightforward. We prove each implication separately.

XIV

⇒ It follows from Lemma 3 that σ ∈ Straces(i) implies that σ ∈ Straces(Q(i)).

Thus if ∃σ, q′ • te|Q(i)
σ

=⇒ faile|q′, it implies that ∃i′ • te|i σ
=⇒ faile|i′ and

subsequently it results in i passes t =⇒ Q(i) passes t.
⇐ Since Straces(i) ⊆ Straces(Q(i)), the left-to-right implication is very clear. If

∃σ, i′ • te|i σ
=⇒ faile|i′, it implies that ∃q′ • te|Q(i)

σ
=⇒ faile|q′. Subsequently it

results in Q(i) passes t =⇒ i passes t.

�
It is argued in [7, 8] that ioco test case generation is sound and exhaus-

tive. Soundness means generated test cases can detect errors and exhaustiveness
means at least theoretically they can detect all non-conforming implementations.

Definition 23 (Soundness and exhaustiveness). Let s ∈ IOLTS(LI , LU)
and T ⊆ TTS(LU , LI) then,

1. T is sound ⇐⇒def ∀i ∈ IOTS(LI , LU) • i ioco s implies i passes T .
2. T is sound ⇐⇒def ∀i ∈ IOTS(LI , LU) • i ioco s if i passes T .

Theorem 4. s ∈ IOLTS@, i ∈ IOTS@ then i ioco s⇐⇒ Q(i) ioco s.

Proof. From Definition 23, we know that i ioco s iff i passes T with T is a test
suite generated by Algorithm 17 from specification s. Also, it is concluded from
Theorem 3 that i passes T implies that Q(i) passes T . Thus due to Definition
23, the last observation results in Q(i) ioco s.

Remark 1. It is noteworthy that i ioco s with s ∈ IOLTS@, i ∈ IOTS doesn’t
imply necessarily that i ∈ IOTS@ and subsequently Q(i) ioco s. But, if our
specification is completely specified for input actions then the above implication
will hold. In other words, i ioco s with s ∈ IOTS@, i ∈ IOTS does imply that
i ∈ IOTS@ and subsequently Q(i) ioco s.

5 Necessary and Sufficient Condition

In the previous section, we have presented a class of implementation so-called
delay right-closed whose synchronous and asynchronous test executions lead to a
same verdict. We now show that being delay right-closed IOTS is necessary con-
dition to have the same verdict simultaneously in synchronous and asynchronous
execution, too.

Theorem 5. Let i ∈ IOTS(LI , LU) and t ∈ TTSioco(LI , LU), then
i passes t⇐⇒ Q(i) passes t implies i ∈ IOTS@(LI , LU).

Proof. To prove the theorem given above, we prove i /∈ IOTS@(LI , LU) implies
i passes t X=⇒ Q(i) passes t. Without loss of generality we assume that there
exists a σ ∈ (L∪{τ, δ})∗ such that iafterσ is both input and output enabled. In

general we can formulate it as ∃q1, q2 ∈ (iafterσ), q′1, q
′
2, a ∈ Li, x ∈ LU • q1

a−→
q′1∧q2

x−→ q′2. It is concluded from i /∈ IOTS@(LI , LU) that Straces(iafterσ) is

XV

not delay-right-closed. Thus without loss of generality we can assume that x.a ∈
Straces(iafterσ) as its delayed sequence a.x /∈ Straces(iafterσ). According to
Algorithm 17, there exists a state t′ at which the tester can either provide the
input a or observe the output x nondeterministically(∃t′ • t′ a−→ ∧t′ x−→) and
from the previous assumption we know observing the output x after providing a
leads to fail state. Consider a situation in which the sequence of σ is executed
during the test execution and t reaches t′. Then the tester provides an input a
being put in the input queue as the implementation under the test, produces an
output x being put in the output queue, according to rule A1 and I3 in Definition
12 respectively. Thus the implementation during this execution reaches the state

[x�q′2�a]. According to rule A2 in Definition 12, the output transition of x can
happen which leads the tester to fail state which was to be shown.

6 Conclusions

In this paper, we presented theorems which allow for using test-cases gener-
ated from ordinary specifications in order to test asynchronous systems. These
theorems establish sufficient conditions when the verdict reached by testing the
asynchronous system (remotely, through FIFO channels) corresponds with the
local testing through synchronous interaction. In the case of IOCO testing the-
ory, we show that the presented sufficient conditions are also necessary.

The presented conditions for synchronizing IOCO are semantical in nature.
We intend to formulate syntactic conditions that imply the semantical condi-
tions presented in this paper. The research reported in this paper is inspired by
our practical experience with testing asynchronous systems reported in [1]. We
plan to apply the insights obtained from this theoretical study to improve our
practical results.

References

1. HamidReza Asadi, Ramtin Khosravi, MohammadReza Mousavi, and Neda
Noroozi. Towards model-based testing of electronic funds transfer systems. In Pro-
ceedings of the 4th International on Fundamentals of Software Engineering (FSEN
2011), Lecture Notes in Computer Science. Springer, 2011.

2. Claude Jard, Thierry Jéron, Lénaick Tanguy, and César Viho. Remote testing
can be as powerful as local testing. In IFIP Joint Conferences: FORTE XII) and
(PSTV XIX), volume 156 of IFIP Conference Proceedings, pages 25–40. Kluwer,
1999.

3. Alexandre Petrenko and Nina Yevtushenko. Queued testing of transition systems
with inputs and outputs. In Proceedings of the Workshop on Formal Approaches
to Testing of Software FATES 2002, pages 79–93, 2002.

4. Alexandre Petrenko, Nina Yevtushenko, and Jiale Huo. Testing transition systems
with input and output testers. volume 2644 of Lecture Notes in Computer Science,
pages 129–145. Springer, 2003.

5. Adenilso Simao and Alexandre Petrenko. From test purposes to asynchronous test
cases. In Third International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW 2010), pages 1–10. IEEE CS, 2010.

XVI

6. Jan Tretmans. A formal Approach to conformance testing. PhD thesis, University
of Twente, The Netherlands, 1992.

7. Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 3:103–120, 1996.

8. Jan Tretmans. Model based testing with labelled transition systems. In Formal
Methods and Testing, volume 4949 of Lecture Notes in Computer Science, pages
1–38. Springer, 2008.

9. Jan Tretmans and Louis Verhaard. A queue model relating synchronous and asyn-
chronous communication. In Proceedings of the IFIP Symposium on Protocol Speci-
fication, Testing and Verification, volume C-8 of IFIP Transactions, pages 131–145.
North-Holland, 1992.

10. Louis Verhaard, Jan Tretmans, Pim Kars, and Ed Brinksma. On asynchronous
testing. In Proceedings of the IFIP Workshop on Protocol Test Systems, volume
C-11 of IFIP Transactions, pages 55–66. North-Holland, 1993.

11. Martin Weiglhofer. Automated Software Conformance Testing. PhD thesis, Graz
University of Technology, Austria, 2009.

12. Martin Weiglhofer and Franz Wotawa. Asynchronous input-output conformance
testing. In Proceedings of the International Computer Software and Applications
Conference (COMPSAC’09), pages 154–159. IEEE Computer Society, 2009.

Appendix

Proof of Proposition 3.1.

1. i
ε

=⇒ i′ iff te|i ε
=⇒ te|i′ (R∗1)

We prove the two implications by a straightforward induction on the length
of the τ -traces leading to

ε
=⇒, see item 1 in Definition 3:

⇒ Assume, for the induction basis, that i
ε

=⇒ i′ is due to a τ -trace of length
0; thus, it follows from the first disjunct of item 1 in Definition 3 that
i = i′. It then follows from the same item that te|i ε

=⇒ te|i and since

i = i′, we have that te|i ε
=⇒ te|i′, which was to be shown.

For the induction step, assume that the thesis holds for all
ε

=⇒ resulting
from a τ -trace of length n − 1 or less and that i

τ−→ . . .
τ−→ in−1

τ−→
i′. It follows from the induction hypothesis that te|i ε

=⇒ te|in−1. Also

from in−1
τ−→ i′ and deduction rule R1 in Definition 7, we have that

te|in−1
ε

=⇒ te|i′. Hence, it follows from item 1 in Definition 3 that te|i ε
=⇒

te|i′, which was to be shown.

⇐ Almost identical to above. The induction basis is identical to the proof
of the implication from left to right. For the induction step, note that
the last τ -step of te|in−1

ε
=⇒ te|i′ can only be due to deduction rule R1

and hence we have in−1
ε

=⇒ i′, which in turn implies, by using item 1 in

Definition 3, that i
ε

=⇒ i′.

2. [σu�S�σi]
σ′i=⇒ [σu�S�σi.σ′i]

, σ′i ∈ L∗I (A∗1).

3. [σ′u.σu�S�σi]
σ′u=⇒ [σu�S�σi], σ

′
u ∈ LU (A∗2).

XVII

4. [σu�i�σi]
ε

=⇒ [σu�i
′�σi] iff i

ε
=⇒ i′(I∗1). Almost identical to the previous

item: we prove the two implications by induction on the length of the τ -
trace for leading to

ε
=⇒:

⇒ Assume, for the induction basis, that i
ε

=⇒ i′ is due to a τ -trace of length
0; thus, it follows from the first disjunct of item 1 in Definition 3 that
i = i′. It then follows from deduction the same item that [σu�i�σi]

ε
=⇒

[σu�i�σi] and since i = i′, we have that [σu�i�σi]
ε

=⇒ [σu�i
′�σi], which

was to be shown.
For the induction step, assume that the thesis holds for all

ε
=⇒ resulting

from a τ -trace of length n−1 or less and that i
τ−→ . . .

τ−→ in−1
τ−→ i′. It

follows from the induction hypothesis that [σu�i�σi]
ε

=⇒ [σu�in−1�σi]
.

Also from in−1
τ−→ i′ and deduction rule I1 in Definition 12, we have that

[σu�in−1�σi]
τ−→ [σu�i

′�σi].Hence, it follows from item 1 in Definition

3 that [σu�i�σi]
ε

=⇒ [σu�i
′�σi], which was to be shown.

⇒ Similar to the above item. The induction basis is identical. The induc-
tion step follows from the same reasoning. Note that [σu�in−1�σi]

ε
=⇒

[σu�i
′�σi] can only be proven using deduction rule I1 in Definition 12,

because deduction rules I2 and I3 produce modified queues in their tar-
get of the conclusion. Hence, the premise of deduction rule I1 should
hold and thus, in−1

τ−→ i′. Hence, using the induction hypothesis we

obtain that i
ε

=⇒ i′.
5. [σu�i�σi.σ′i]

ε
=⇒ [σu�i

′�σ′i] iff i
σi=⇒ i′(I∗2).

6. [σu�i�σi]
ε

=⇒ [σu.σ′u�i
′�σi] iff i

σ′u=⇒ i′(I∗3).

�

Lemma 4. For each i, i′ ∈ IOTSu(LI , LU) and TTSu Tu = 〈Q,LU ∪
LI ∪ {θ}, T, q0〉, t, t′ ∈ Q and σu ∈ L∗U and σi ∈ L∗I , if te|[σu�i�σi]

a
=⇒

t′e|[σu�i
′�σ∧i a], then [σu�i

′�σi] is quiescent(δq([σu�i
′�σi])).

Proof of Lemma 4. Assume a ∈ LI and te|[σu�i�σi]
a

=⇒ t′e|[σu�i
′�σ∧i a], from

Definition 3 (item 2), we know there exists an i′′ ∈ IOTSu(LI , LU) such that

te|[σu�i�σi]
ε

=⇒ te|[σu�i
′′�σi]

a−→ t′e|[σu�i
′′�σ∧i a]

ε
=⇒ t′e|[σu�i

′�σ∧i a]. It follows

from item 4 in Proposition 1 and te|[σu�i�σi]
ε

=⇒ te|[σu�i
′′�σi] that i

ε
=⇒

i′′. Also it is concluded from Proposition 1(item 4) and t′e|[σu�i
′′�σ∧i a]

ε
=⇒

t′e|[σu�i
′�σ∧i a] that i′′

ε
=⇒ i′. Thus, according to item 1 in Definition 3, i

ε
=⇒ i′

and subsequently according to Proposition 1(item 4), [σu�i�σi]
ε

=⇒ [σu�i
′�σi].

The former observation and item 1 in Proposition 1 lead to te|[σu�i�σi]
ε

=⇒
te|[σu�i

′�σi]. Using deduction rule A1 in Definition 12 and applying deduction

rule R2 in Definition 7 result in te|[σu�i
′�σi]

a
=⇒ t′e|[σu�i

′�σ∧i a]. Hence, there is

a trace starting from te|[σu�i�σi] to te|[σu�i
′�σi]

a
=⇒ t′e|[σu�i

′�σ∧i a]. It follows
then from Definition 11 that δq([σu�i

′�σi]) (since test case t can only provide
an input if it has observed quiescent, by looking into all future traces), which
was to be shown. �

XVIII

Lemma 5. For each i, i′ ∈ IOTSu(LI , LU) and TTSu Tu = 〈Q,LU ∪ LI ∪
{θ}, T, q0〉, t, t′ ∈ Q, there is no trace σ ∈ (LI ∪LU ∪ {θ})∗ such that te|Q(i)

σ
=⇒

t′e|[σu�i
′�σi] and (σi 6= ε ∧ σu 6= ε).

Proof of Lemma 5. Assume, towards a contradiction, that the following items
hold:

1. te|Q(i)
σ

=⇒ t′e|[σu�i
′�σi]

2. σi 6= ε ∧ σu 6= ε

Since both σi and σu are non-empty, there must exist the largest prefix σ′

of σ during which the two queues are never simultaneously non-empty, i.e., by
observing a single action after σ′, both queues become non-empty for the first
time. Hence, there exists σ′, σ′′ ∈ (LI ∪LU ∪ θ)∗ and y ∈ (LI ∪LU ∪ {τ, θ}) and
a postfix σ′′ of σ such that:

1. σ = σ′.y.σ′′

2. there exist σ′i ∈ (LI)
∗, σ′u ∈ (LU)∗ such that te|Q(i)

σ′
=⇒ t1e|[σ′u�i1�σ′i] ∧

((σ′u = ε ∧ σ′i 6= ε) ∨ (σ′i = ε ∧ σ′u 6= ε))

3. there exist σ′′i ∈ (LI)
∗, σ′′u ∈ (LU)∗ such that t1e|[σ′u�i1�σ′i]

y−→
t2e|[σ′′u�i2�σ′′i] ∧ ((σ′u = ε ∧ σ′i 6= ε ∧ σ′′u 6= ε ∧ σ′′i = σ′i) ∨ (σ′i = ε ∧ σ′u 6=
ε ∧ σ′′i 6= ε ∧ σ′′u = σ′u))

4. t2e|[σ′′u�i2�σ′′i]
σ′′
=⇒ te|[σu�i�σi]

Note that after σ′ both input and output queues cannot be empty, since a
single transition y can at most increment the size of one of the two queues (see
rules A1 and I3 in Definition 12). Below, we distinguish two cases based on the
status after performing the trace σ′: either the input queue is empty (and the
output queue is not), or the other way around.

σ′u = ε The only possible transition that can fill an output queue is due to the
application of deduction rule I3 in Definition 12. Hence, there must exists
some i2 ∈ LTSu(LI , LU) and x ∈ LU such that [ε�i1�σ′i]

τ−→ [x�i2�σ′i]
and subsequently, (t1e|[ε�i1�σ′i]

τ−→ t2e|[x�i2�σ′i]) (thereby satisfying the
third item with σ′u = ε and σ′′u = x). The former x-labeled transition
can only be due to deduction rule I3 in Definition 12 and hence, we have
i1

x−→ i2. However, it follows from σ′i 6= ε that there exit an a ∈ LI ,
ip ∈ IOTSu(LI , LU), a prefix of σ′ like σ′p and ρi ∈ L∗I such that σ′i = ρi.a

and te|Q(i)
σ′p

=⇒ t′1e|[ε�ip�ρi]
a

=⇒ t1e|[ε�i1�σ′i]. Since, i ∈ IOTSu(LI , LU),

we have from Lemma 4 that δq([ε�i1�ρi]). Using deduction rule A2 on

i1
x−→ i2, we obtain that [ε�i1�ρi]

ε
=⇒ [x�i2�ρi]. Hence according to Defi-

nition 5, state [ε�i1�ρi] is not quiescent, which is contradictory to our earlier
observation about δq([ε�i1�ρi]).

σ′i = ε The only transition which allows for filling the input queue is due the subse-
quent application of deduction rules R2 and A1. Hence, there exists an a ∈
LI , such that t1e|[σ′u�i1�ε]

a−→ t2e|[σ′u�i2�a]) and [σ′u�i1�ε]
a−→ [σ′u�i2�a]

XIX

(where the former satisfies the third item by taking σ′i = ε and σ′′i = a); It
follows from i ∈ IOTSu(LI , LU), and Lemma 4 that δq([σ′u�i2�ε]). How-
ever since σ′u 6= ε, there exists a y ∈ LU and ρu ∈ L∗U , such that σ′u = y.ρu
and using deduction rule A2, we obtain that that [σ′u�i2�ε]

x−→ and thus,

[σ′u�i2�ε] is not quiescent, which is contradictory to our earlier observation.

�

Lemma 6. For each i, i′ ∈ IOTSu(LI , LU), TTSu Tu = 〈Q,LU ∪ LI ∪
{θ}, T, q0〉, t, t′ ∈ Q and σ, σu, σi ∈ {LI ∪ LU ∪ θ}∗ and σi 6= ε. If te|Q(i)

σ
=⇒

t′e|[σu�i
′�σi] then δq(i

′) and σu = ε.

Proof of Lemma 6. By lemma 5, we have that σu = ε. Assume, towards
a contradiction that there exists an x ∈ LU such that x ∈ Sinit(i′).
Since x ∈ Sinit(i′), it follows from item 2 in Definition 4 that there ex-

ists an i′′ ∈ IOTSu(LI , LU) such that i′
x

=⇒ i′′. Since σi 6= ε there exist
σ′ ∈ {LI ∪ LU ∪ θ}∗, ip ∈ IOTSu(LI , LU), tp ∈ TTSu(LU , LI), a ∈ LI , and

ρi ∈ L∗I such that σi = ρi.a and te|Q(i)
σ′

=⇒ tpe|[ε�ip�ρi]
a

=⇒ t′e|[ε�i′�σi].

Hence by Lemma 4, [ε�i′�ρi] is quiescent(δq([ε�i′�ρi])).
It follows from the assumption and deduction rule I∗3 in Proposition 1,

[ε�i′�ρi]
τ

=⇒ [x�i′′�ρi]. Since the output queue is non-empty we can apply

deduction rule A2 on the target state and obtain [x�i′′�ρi]
x−→ [ε�i′′�ρi].

Combining the two transitions, we obtain [ε�i′�ρi]
y

=⇒ [ε�i′′�ρi]. From
the latter transition, we conclude that [ε�i′�ρi] is not quiescent which is
contradictory to the former observation. �

Proof of Lemma 3.1. Assume, towards a contradiction, that for all i′ such
that i

ε
=⇒ i′, it doesn’t hold δ(i′). Take the i′ with the largest empty trace

(by counting the numbers of τ -labeled transitions). Such i′ must exist since
otherwise, there must be a loop of τ -labeled transition which is opposed to
the assumption that i doesn’t diverge. Since i′ is not quiescent, according
to Definition 5, there exists an x ∈ Lu such that i′

x−→. From item ?? in
Definition 3, we know that there must exist an i′′ such that i′

x−→ i′′. It follows
from item 4 in Proposition 1 and deduction rule I3 in Definition 12 that
Q(i)

ε
=⇒ [x�i′′�ε] and since the output queue is non-empty we can apply the

deduction rule A2 on the target state and obtain [x�i′′�ε]
x−→ Q(i′′). Com-

bining the two transition we obtain Q(i)
x

=⇒ Q(i′′). From the latter transition
we can conclude that Q(i) is not quiescent which is contradictory to the thesis. �

Proof of Proposition 3.2. We distinguish four cases based on the status of input
and output queues.

(σi = ε, σu = ε) By assuming s′ = s, the thesis is proved.
(σi 6= ε, σu 6= ε) According to Lemma 5, no trace leads to this situation.
(σi 6= ε, σu = ε) We prove this case by an induction on the length of σi. Since σi 6= ε, for

the induction basis, the smallest possible length of σi is one. Thus there

XX

must be an x ∈ LI such that σi = x. From Lemma 6, we know that ∀x ∈
LU , x /∈ Sinit(s′) and since s′ doesn’t diverge, it must reach eventually a
state such as i which performs a transition other than an internal one, hence
the only possible choice is an input transition. From Definition 9 we know
that δ(i) and according to Definition 10, state i is input-enabled as well.

Thus ∃i′ • i x−→ i′. Due to the subsequent application of deduction rules of
I1 , I2 in Definition 12 and R1 in Definition 7, transition t′e|[ε�s′�x]

ε
=⇒

t′e|Q(i′) is possible. By assuming s′′ = i′ and combination of the latter

transition and the assumption, we have te|Q(s)
σ

=⇒ t′e|Q(i′) which was to
be shown. For the induction step, assume that the thesis holds for all non-
empty input queues with length n− 1 or less and length of σi is n. It follows
from σi 6= ε that there exists an a ∈ LI and σ′i ∈ LI∗ and σ′ ∈ (L ∪ {θ})∗

such that σi = σ′i.a and te|Q(s)
σ′

=⇒ tpe|[ε�i′�σ′i]
a

=⇒ t′e|[ε�s′�σi]. It follows

from the induction hypothesis that ∃i • te|Q(s)
σ′

=⇒ tpe|Q(i). Due to the
application of deduction rule R2 in Definition 7 and A1 in Definition12,
we have tpe|Q(i)

a
=⇒ t′e|[ε�i�a]. It follows from the induction basis that

∃s′′ • tpe|Q(i)
a

=⇒ t′e|Q(s′′). Combination of the two transitions leads to

∃s′′ • te|Q(s)
σ

=⇒ t′e|Q(s′′) which was to be shown.

(σi = ε, σu 6= ε) We prove this case by an induction on the length of σu. Since σu 6= ε,
for the induction basis, the smallest possible length of σu is one. Thus,
assume, for the induction basis, that there exists an x ∈ LU such that
σu = x. The only possible transition that can fill the output queue
is due to the application of deduction rule I3 in Definition 12. Hence,
there must exist some s′′, q′′ ∈ IOTSu(LI , LU) such that [σ′u�s

′′�σ′i]
τ−→

[σ′u.x�q
′′
�σ′i]

ε
=⇒ [σ′u.x�s

′�σ′i]. Combination of the two transition concludes

that [σ′u�s
′′�σ′i]

ε
=⇒ [σ′u.x�q

′′
�σ′i]. It follows from the application of deduc-

tion rule R1∗ in Proposition 1 that the input queue at state [σ′u�s
′′�σ′i]

must be empty since otherwise according to Lemma 6, s′′ would be quies-
cent and could not produce any output. Thus there exist σ′ ∈ (L ∪ {θ})∗,
σ′u ∈ L∗U and t′p ∈ TTSu(LU , LI) such that te|Q(s)

σ′
=⇒ t′pe|[σ′u�s

′′�ε]
ε

=⇒

t′pe|[σ′u.x�s
′�ε]

σ′u=⇒ t′e|[x�s′�ε] and σ = σ′.σ′u. Due to the application of
deduction rules R2 in Definition 7 and A2 in Definition 12, it concludes

that t′pe|[σ′u�s
′′�ε]

σ′u=⇒ t′e|Q(s′′) and subsequently we have te|Q(s)
σ′

=⇒

t′pe|[σ′u�s
′′�ε]

σ′u=⇒ t′e|Q(s′′) which was to be shown.
For the induction step, assume that the thesis holds for all non-empty out-
put queues with length n − 1 or less and length of σu is n. It follows from
σu 6= ε that there exist an x ∈ LU and σ′u ∈ L∗U and σ′ ∈ (L ∪ {θ})∗ such

that σu = σ′u.x and te|Q(s)
σ′

=⇒ tpe|[σ′′u .σ′u�q�ε]
τ−→ tpe|[σ′′u .σ′u.x�q

′
�ε]

σ′′u=⇒
t′e|[σ′u.x�s

′�ε] and σ = σ′.σ′′u. Due the application of deduction rule R2

in Definition 7 and A2 in Definition 12, we have tpe|[σ′′u .σ′u�q�ε]
σ′′u=⇒

t′e|[σ′u�q�ε]. Thus we can run the previous execution in a new order such

XXI

as te|Q(s)
σ′

=⇒ tpe|[σ′′u .σ′u�q�ε]
σ′′u=⇒ t′e|[σ′u�q�ε]

τ−→ t′e|[σ′u.x�s
′�ε]. Hence we

can reach a new state with the output length less than the length of σu
by running the same execution and it follows from the induction hypothesis
that ∃s′′ • te|Q(s)

σ
=⇒ t′e|Q(s′′) which was to be shown.

�

XXII

