
Towards Automatic Test Case Generation for
Industrial Software Systems Based on Functional

Specifications

Arvin Zakeriyan1, Ramtin Khosravi1[0000−0001−6393−0959], Hadi Safari1, and
Ehsan Khamespanah1

School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
{a.zakeriyan,r.khosravi,hadi.safari,e.khamespanah}@ut.ac.ir

Abstract. High-capability software services, like transaction processing
systems, need to satisfy a range of non-functional characteristics such as
performance, availability, and scalability. To fulfill these needs, the core
business logic is usually extended with a large amount of non-domain
logic in the form of frameworks, libraries, and custom code, which some-
times cannot be cleanly separated from the domain logic. So, it is nearly
impossible to generate test cases for the whole system systematically
guided by structural metrics on the source code. In this paper, we propose
a specification-based approach to generate test cases. In this approach,
the domain logic is specified in a functional notation (based on Gallina).
Test cases are generated using a search-based approach where the fitness
function is defined in terms of the structural coverage of the specification
(measured over an equivalent Haskell implementation). An experiment
on an industrial stock exchange trading engine indicates promising re-
sults in the effectiveness of our proposed approach.

Keywords: Automatic Test Case Generation · Formal Specification Based
Testing · Search Based Testing

1 Introduction

In today’s computing landscape, we often encounter software services that must
operate under various quality constraints such as performance and availabil-
ity. This happens both in enterprise information systems, or the back-ends of
Internet-based public services. Examples include stock trading matching engines
that must serve the requests in an extremely short response time, airline reserva-
tion systems that must handle a large load of requests before national holidays,
or highly available electronic funds transfer switches handling card-based finan-
cial transactions reliably. For this kind of software service, to which we refer
as high capability software service1, the processing is often broken into several
short-lived requests (sometimes referred to as transactions). While they are often

1 The term “high capability” has been borrowed from the title of [7].

2 A. Zakeriyan et al.

under critical architectural forces such as performance, scalability, and availabil-
ity, other non-functional requirements such as maintainability, security, etc. must
be also met as other types of software systems. As such systems often play im-
portant roles, especially in financial domains, making sure they are functionally
correct is as important as satisfying non-functional requirements.

The problem is that, the force to achieve the wide range of critical quality
attributes brings in many non-domain elements into the system, ranging from
third-party frameworks and libraries at the architecture level (e.g., in-memory
object caches) down to custom optimizations in the implementation or even
code hacks at the system level (e.g., bypassing TCP stack to reduce latency).
While these elements affect the non-functional characteristics of the system,
their combination may impact the functional correctness of the system as well.
Hence, even having separately tested the domain logic during unit testing stage,
it is crucial to apply a disciplined end-to-end system test to make sure that the
system behaves correctly in presence of these non-domain elements.

In this paper, we report the method we developed to test a high-capability
stock trading engine, with sub-millisecond response time to trading requests
over hundreds of symbols and millions of shareholders. The system is mainly
implemented in Java and employs many sophisticated techniques to achieve the
required quality. The system already has two sets of automated tests: about 1500
unit test case in JUnit2, and a set of about 1100 Behavior-Driven Development
(BDD) tests [1], all written by the development team. Our testing approach is
completely black-box and does not depend on any knowledge about the imple-
mentation of the system, hence we believe our method is applicable to many
other software systems as well.

We have taken a specification-based approach to testing for two reasons.
First, as said before, our goal is to make sure the system functions correctly in
presence of elements embodied to meet non-functional requirements. So, we may
need relatively large test cases that drive the elements to their boundaries to ex-
plore various possible scenarios. Hence, using manual oracles is not feasible while
a formal specification may serve as the test oracle. Second, to attain a certain
level of confidence about the functional reliability of the system, a disciplined
approach must be taken to make sure the testing has met some kind of cover-
age criteria. Unfortunately, as the source code of the system is relatively large
and the domain logic is mixed a lot with non-domain logic, defining a suitable
coverage metric on the implementation code is practically infeasible. Therefore,
the specification serves as a basis for disciplined test case generation too.

We have chosen Gallina (the specification language of Coq [6]), to specify
the functionality of the system for three reasons. First, the functional nature of
the language makes it appropriate for specifying the order matching algorithms,
which are explained procedurally in the informal specifications, compared to
a pre- and post-condition specification style. Second, we can use Coq to vali-
date the specifications against some general properties. Finally, by automatically
translating the specifications into Haskell programs, we make use of various tools

2 http://junit.org

Towards Test Case Generation for Industrial Software Systems 3

such as coverage or symbolic execution tools. We will present more detail on the
specification in Section 3.

As the system under test is not small, using symbolic execution to generate
test cases systematically is infeasible. So, we take a search-based approach to
test case generation. The fitness function is defined based on the specification
coverage and is measured on the automatically generated Haskell code from the
specification. We have used both simulated annealing and genetic algorithms to
generate test cases. Our early results indicate the latter produces better results.
The test case generation method is explained more in Section 4.

We have detected two important faults using our generated test cases. To
further evaluate the method, we performed mutation analysis and coverage mea-
surements. The early results, reported in Section 5, indicate that attaining the
same quality as the manually written tests requires considerably less effort using
our method.

In summary, the main contribution of this paper is to demonstrate the appli-
cability of formal specification-based testing to a relatively large data-intensive
software system, highly constrained to non-functional requirements. Further-
more, the use of functional notation as the formalism for specification-based
testing is novel as the existing research mainly base their specification on pre-
and post-conditions, algebraic specification, or automata-theoretic formalisms
[12]. Finally, guiding the search-based test case generation based on a formal
specification is done for the first time, to the best of our knowledge.

2 Background

The system under test in this paper is a stock market order matching engine3 as
a part of an electronic trading platform which is under development and is to be
used in Tehran Stock Exchange. The matching engine supports handling orders
of various types (e.g., Limit, Market to Limit, Iceberg), as well as a number
of order time or volume qualifiers (e.g., ‘Minimum Quantity’ or ‘Fill and Kill’).
Also, several pre- and post-trade checks must be made (e.g., brokers’ credit limit,
and shareholders percentage ownership).

As other products of the same category, the matching engine is supposed to
handle the incoming requests within a very low response time (sub-milliseconds).
Hence, the system has a rather complicated design because of a variety of design
decisions and techniques at different levels. Examples include using Disruptor
framework4 to increase performance, Project Lombok5 to increase productivity
and maintainability, and extensive use of Spring Framework as an inversion of
control container to make the product configurable and testable. As using an
external database increases the response time considerably, the system contains
several custom data structures designed to efficiently handle a large amount
of in-memory data (regarding stock symbols, shareholders, brokers, etc.). In

3 https://en.wikipedia.org/wiki/Order matching system
4 http://lmax-exchange.github.io/disruptor/disruptor.html
5 https://projectlombok.org

4 A. Zakeriyan et al.

addition to architecture and design level decisions, a lot of implementation-level
optimizations has been made to speed up the computations.

2.1 Running Example: Matching Limit Orders

As the reader may not be familiar with the domain of stock trading, we explain
a simplified matching algorithm and use it as a running example throughout the
paper. Limit order is one among several types of orders usually supported by
matching engines. “A limit order is an order to buy or sell a stock at a specific
price or better.”6 This means that a buy order can only be matched with a
sell order of a price no more than its limit price, and a sell order can only be
matched with a buy order of a price no less than its limit price. In its simplest
form, a limit order contains an order identifier, the stock symbol, the limit price,
the quantity, as well as the identifiers of the shareholder and/or broker issuing
the order. A limit order may not be executed immediately, as an opposite order
with a matching price may not be found. In such a case, the order enters the
order book. The order book contains two separate priority queues of the orders
in the system, one for buy orders and another for sell orders. Buy orders with
the highest prices and sell orders with the lowest prices rank the highest on their
respective queues. The orders with the same rank are prioritized according to
their arrival times.

Order book before matching

Buy Sell
ID Price Qty ID Price Qty

1 50 500 4 55 500
2 40 1000 5 60 300
3 40 800 6 70 1000

Order book after matching

Buy Sell
ID Price Qty ID Price Qty

7 60 400 6 70 1000
1 50 500
2 40 1000
3 40 800

Input Buy Order

ID Price Qty

7 60 1200

Output Trades

BID SID Price Qty

7 4 55 500
7 5 60 300

Fig. 1. An example of matching limit orders: the input order (ID 7) is partially matched
with the two topmost orders in the sell queue, generating the two trades (on the right).
The remaining quantity is added to the buy side of the order book.

As an example, the left side of Fig. 1 shows the order book of some stock
symbol in the system when a new limit order arrives. The system tries to match
the new order with the orders in the opposite side queue (sell queue in this
case), and tries to match as much quantity as possible. In this example, the two

6 https://www.sec.gov/fast-answers/answerslimithtm.html

Towards Test Case Generation for Industrial Software Systems 5

topmost sell orders are matched, but the third one has a sell limit price higher
than the new order’s buy limit price. So, the remaining quantity of the new
order is inserted into the buy priority queue. Note that a trade price is always
the price of the order taken from the queue.

Another type of order is iceberg order type, which is similar to limit order
type except that when an iceberg order enters the order book, only a portion of
its quantity (called disclosed quantity) can be traded. When all of the disclosed
quantity is matched, the iceberg order loses its time priority and treated as if
it just entered the queue with the quantity equal to its disclosed quantity. This
process is repeated until all of its quantity is matched. Apart from order types,
an order can have a number of time or volume quantifiers. As an instance, an
order with a minimum quantity quantifier, is executed only if a certain quantity
can be traded instantaneously (i.e., before entering the queue). For example, if
the new limit order in Fig. 1 has a minimum quantity attribute of value 1000,
it is not executed in our case, i.e., the order is rejected and no trade is made.
On the other hand, if the value of minimum quantity attribute is 500, then the
result would be exactly the same as the one illustrated in the figure.

3 Functional Specification

In this section, we give an overview of the method used for specifying the system
under test with the aim of test case generation. We need a specification approach
that focuses on modeling computations over rich data models, provides abstrac-
tion mechanisms to enable concise specification of a large system, is supported
by a mature toolset, and is acceptable by software engineers.

The first requirement ruled out automata-based notations which focus more
on state-based modeling of control-intensive systems. We examined several other
methods, including Event-B7, Alloy8, pure functional specification, and even
small subsets of imperative programming languages. Based on the simple proto-
types made, the functional approach seemed to best satisfy the above require-
ments. Features like algebraic data types, recursive computations on lists, and
rich abstraction patterns based on higher-order functions enabled a readable
and concise specification of the matching engine. Our first prototypes were in
Haskell, and based on its success, we ported the prototypes to Gallina to enable
formal analysis using Coq.

Although our basic specification pattern follows a model-based paradigm, re-
lating the states before and after handling a request using a functional descrip-
tion is more understandable for the developers compared to the logical specifica-
tion based on pre- and post-conditions. This is because most software engineers
are familiar with functional programming, especially now, with the extensive use
of the elements of functional paradigm in mainstream programming languages.

A benefit of using functional specification is that while its core concepts such
as recursive functions and higher-order function are familiar to the developers,

7 http://event-b.org
8 https://alloytools.org

6 A. Zakeriyan et al.

the stateless nature of the computation greatly simplifies the specification of
domain logic compared to the imperative paradigm. The fact that efficiency has
been a main concern in developing the system under study, made the developers
prefer “update-style” over “copy style” handling of changes in the system states.
At several points, the developers were surprised when they saw how simple and
concise a functional specification could model a rather complicated implemen-
tation of a feature.

3.1 Basic Specification Patterns

The system specification is basically an abstract state machine. The system
receives requests of various types to process. Processing a request generates a
response and changes the state of the system. At an abstract level, if Request
and Response represent the set of all requests and all responses respectively,
and State represents the set of states of the system, we have handlers of type
Handler = Request × State → Response × State. Each request type is handled
by a separate handler function.

Data Parameters and States To represent data parameters, we need to
model basic entities in the system. The definitions needed to specify our running
example is listed below.

Definition OrderID := nat.

Definition Quantity := nat.

Definition Price := nat.

Inductive Side : Type := Buy | Sell.

Record Order := order

{ oid : OrderID

; price : Price

; quantity : Quantity

; minqty : option Quantity

; side : Side

}.

Definition OrderQueue := list Order.

Record OrderBook : Type := orderBook

{ buyQueue : OrderQueue

; sellQueue : OrderQueue

}.

Record Trade : Type := trade

{ priceTraded : Price

; quantityTraded : Quantity

}.

Based on these definitions, the state of the system can be defined like:

Record State : Type := state

{ orderbook : OrderBook

; creditinfo : CreditInfo

; ownershipinfo: OwnershipInfo

}.

The first field denotes the order book which is a major part of the system state.
Other parts are required to enable credit limit and percentage ownership checks
which we have not included in the example. The definitions of the records for
modeling requests and responses are straightforward and not listed to save space.

Towards Test Case Generation for Industrial Software Systems 7

Request Handler Functions Each request type in the system is modeled each
by a request handler function. The handler function for new order requests can
be modeled conforming to the mentioned pattern for handlers. It delegates the
request to the function that matches new orders.

Definition handleNewOrder (rq : Request) (s : State) : Response * State :=

(* unbox and delegate the request to matchNewOrder *)

Definition matchNewOrder (o : Order) (ob : OrderBook) : OrderBook * list Trade :=

match side o with

| Buy ⇒
let ’(rem, sq, ts) := matchBuy o (sellQueue ob) in

match rem with

| None ⇒ (orderBook (buyQueue ob) sq, ts)

| Some o’ ⇒ (orderBook (enqueueBuy o’ (buyQueue ob)) sq, ts)

end

| Sell ⇒ (* similar to Buy case, skipped in the example *)

end.

end.

Finally, matchBuy is the function that implements the matching algorithm
(here, just for limit order type). It matches a buy order o = (i, p, q,mq,Buy)
against the sell queue sellq and returns a triple whose first component is the
‘remainder of o’ after possible matching which is then queued by matchNewOrder

above. Since it is possible that o is fully executed, the type of the parameter is
defined as option Order which may be either None, indicating the order is fully
executed, or Some o’ where o′ is the remainder of o. The second component is
the sell queue after matching and the third component is the list of trades made.
As the definition is rather straightforward, we do not go into more details here.

Fixpoint matchBuy (o : Order) (sellq : OrderQueue) :

(option Order) * OrderQueue * (list Trade) :=

match sellq with

| [] ⇒ (Some o, [], [])

| (order i1 p1 q1 mq1 s1) :: os ⇒
match o with

| order i p q mq s ⇒
if p <? p1 then (Some o, sellq, [])

else if q <? q1 then (None, (order i1 p1 (q1-q) mq1 s1)::os, [trade p1 q])

else if q =? q1 then (None, os, [trade p1 q])

else let ’(o’, sellq’, ts’) := matchBuy (order i p (q-q1) mq s) os

in (o’, sellq’, (trade p1 q1)::ts’)

end

end.

Decorators As stated in Section 2, an order may have a number of qualifiers
which may change the outcome of the matching, or act as pre- or post-checks
to the requests. To model the qualifiers, we use a recursive pattern similar to
Decorator design pattern in object-oriented design patterns [10]. A decorator
is a higher-order function of type Decorator = Handler → Handler , which
encapsulates an ‘inner handler’ which itself may be composed of a number of

8 A. Zakeriyan et al.

decorators applied on a request handler. As an example, we define the ‘Minimum
Quantity’ qualifier described in Section 2 as a decorator:

1 Definition minQuantityCheck (handler : Handler) : Handler :=

2 fun rq s ⇒
3 match rq with

4 | (newOrderRequest o) ⇒
5 let ’(rs, s’) = handler rq s in

6 match minqty o with

7 | None ⇒ (rs, s’)

8 | Some mq ⇒
9 if list_sum (List.map quantityTraded (trades rs)) <? mq then

10 (newOrderResponse false [], s) (* reject the order *)

11 else

12 (rs, s’)

13 end

14 | _ ⇒ handler rq s

15 end.

The decorator returns a handler function that takes a request rq and a state s

(line 2). The decoration is only applied on new order requests (lines 4-13), and
has no effect for other request types (line 14). The request is delegated to the
inner handler handler and the returned response and state are stored in rs and
s’ respectively (line 5). In case the new order has no minimum quantity qualifier,
the results are returned back (line 7). Otherwise, the sum of quantityTraded

fields of the trades made is compared to the value of the minimum quantity (line
9). If this sum is below the minimum quantity, the order is rejected (line 10).
Otherwise, the results from the inner handler is returned back.

It is important to note that the implementation of this feature in the source
code is much more complicated, due to the fact that the matching algorithm
changes the state of the system ‘in place’. This means that after the matching
is completed, the trades are checked to meet the minimum quantity constraint,
and if failed, all the changes to the order book must be ‘rolled back’. This makes
the implementation complicated, especially for more complex order types (like
iceberg order type). On the other hand, the stateless nature of the functional
specification makes both versions of the state available and we ‘roll back’ to the
previous state simply by returning s, as in line 10.

Using the decorator pattern described here, enables us to ‘compose’ various
qualifiers in a modular way. In the following, four decorators are applied to
handleNewOrder (◦ is the notation defined for function composition):

Definition matchingEngine : Handler :=

creditLimitProc ◦ fillAndKillProc ◦ minQuantityCheck ◦
(ownershipCheck 20) ◦ handleNewOrder

3.2 Verifying Properties on Specification

Using Gallina as the formal specification languages enables us to use Coq proof
assistant to verify correctness properties on the specification. For example, the
following lemma states that matchBuy function conserves the total quantities.

Towards Test Case Generation for Industrial Software Systems 9

Lemma quantityConservation : forall o sellq,

(queuedQuantity sellq) = totalQuantity (mb o sellq).

The above lemma uses two defined functions: queuedQuantity which calcu-
lates the sum of the quantities in an order queue, and totalQuantity which
calculates the sum of the queued and the traded quantities. The lemma can be
proved mainly using induction, case analysis, and usual rewriting tactics.

It is important to note that the informal specifications available for the
matching algorithms are generally described in a procedural manner, because
they are targeted for non-expert audience. So, the properties are defined by the
modelers intuitively based on their understanding from the informal descrip-
tions.

4 Test Case Generation

Following a specification-based test case generation approach, the specification
may serve both as the oracle for the test inputs, and a basis for more ‘smart’
generation of test cases compared to plain random test case generation. To this
end, we may use specification coverage as a measure of fitness for a generated
test suite. Ideally, we may use symbolic execution to get full coverage, but it
becomes impractical as the specification gets larger. Hence, we use search-based
test case generation [11,2], as a middle ground between symbolic execution and
plain random test case generation.

In this research, we use a local search (based on simulated annealing) and
a global search (based on genetic algorithm) algorithm to generate test cases.
It should be noted that our purpose is not to compare these search-based ap-
proaches but to show the possibility of using search-based test case generation
from a functional specification for a complex industrial application. Before going
into the details of each technique, we briefly present the fitness function used to
evaluate the test suites.

4.1 Fitness Function

As mentioned before, we use the functional specification as a basis for computing
the fitness of the test suites. This is done by measuring a branch coverage on the
specifications. A branch in our functional specifications happens at two points:
conditional (‘if’) expressions and pattern matching. For example, to cover the
function minQuantityCheck listed in Sect. 3, we need to cover the matches at
lines 4 and 14, the matches at lines 7 and 8, and the expressions at lines 10
and 12. We refer to each of these parts a case, which is an expression appearing
either as a match case or an expression in an if-then-else expression.

The fitness function of a test suite TS (also known as its score) is defined as a
linear combination of the covered cases and the length of the test cases: s = 5c−l,
where c is the number of cases covered by test suite and l is the length of test
suite (i.e., the number of test cases in the test suite) that is required to avoid
generating long test cases. The aim is to maximize the score of the test suites,

10 A. Zakeriyan et al.

but as both algorithms of local and global search try to minimize an objective
function, we use the additive inverse of the score of the test suites as the objective
function.

To measure coverage in practice, we use the program extraction framework (a
part of the Coq toolset) to convert the specification into a Haskell program and
instrument the Haskell code (using a monadic construct) to collect the coverage
information during execution. The search algorithms (explained below) execute
the Haskell program on the inputs generated during the search, and use the
coverage information generated to evaluate the inputs.

4.2 Local Search

We take advantage of simulated annealing as a local search algorithm which uses
some heuristics to escape from local optima. Python package simanneal9 is used
to set up a search-based test case generation framework.

We define a state as an integer array representing a test suite, including at
most 40 test cases. Each test case can have at most 10 orders, fed to system
respectively.

Every order is represented by an integer tuple encoding its broker, share-
holder, price, quantity, side, minimum quantity, Fill and Kill (FaK) Qualifier
and disclosed quantity (for iceberg order types). Each part is chosen from a lim-
ited domain. Each test case is encoded by concatenation of the encoded version
of 10 orders, prefixed by a boolean presence permission grant parameter such
that a test case is included in the test suite this flag is true. This parameter
is added to increase chance of removing a whole test case from test suite and
generating smaller test suites with smaller test cases. Empty test cases (i.e., test
cases with no order) are considered malformed and is deleted from test suite.
The test case also includes the initial credits of 5 brokers and the initial shares
of 10 shareholders. Finally, any state, representing a test suite, is generated of
concatenation of 40 test cases.

Considering the aforementioned representation of state, a neighboring state
can be reached by choosing a random element of the integer array representation
of current state, and replacing it by a randomly selected element of domain of
that field. This way, the framework can move from a state to a neighboring state.
The initial state is generated by picking random values for each element of the
integer array.

4.3 Global Search

We developed another framework based on a modified version of Python package
geneticalgorithm10 to find suitable test suites using an elitist genetic algorithm
as an example of global search techniques. In this framework, we represent a test
suite with a chromosome in the same way we defined a state for the local search

9 https://github.com/perrygeo/simanneal
10 https://github.com/rmsolgi/geneticalgorithm

Towards Test Case Generation for Industrial Software Systems 11

algorithm. We start with a randomly generated non-seeded population as first
generation. Each generation includes 100 chromosomes. We use mutation prob-
ability of 0.1 and cross over probability of 0.5, with uniform cross over type. We
also use elites ratio (determining the number of elites in the population) of 1%,
which means there is one elite in the population. We set a maximum number of
generations of 1000. Using seven different runs of genetic algorithm, the objective
function reduced from the value corresponding to the first randomly generation
(about −120 to −130) to a lower value (even −155), over 1000 iteration.

5 Evaluation

To evaluate the effectiveness of our approach by executing the test suites, two
important faults in the system were discovered. To evaluate the quality of our
test suites we used two methods: comparing the coverage of our tests with the
coverage of the already developed unit tests of the system, and mutation analysis.
The source code of the system is about 80K lines of code, mainly written in Java.
The development team has put a lot of effort in writing unit tests and BDD-
style functional tests. There are more than 1500 test cases in the source code,
devoting about 40% of the code base to test. It is estimated that the team has
invested more than 30% of the development time on developing these tests over
the course of two years development.

5.1 Test Execution

To eliminate the effects of randomness in our generated test suites, we generated
10 test suites using each test case generation algorithm and executed each on the
system under test separately. To execute the generated test suites against the
system, an adaptation layer was needed. This adapter is developed with the help
of the development team. It takes a test case specification file including the test
fixture and the sequence of orders with all their required attributes, initializes
the system with respect to the specified fixture and feeds the orders to system.
After sending all the orders to system, the adapter collects system outputs and
compares them with the test oracles in the test case specifications.

Upon execution of tests generated using both Genetic Algorithm and Simu-
lated Annealing, a number of test cases failed. As we discussed these cases with
the development team, it became clear that there were actually two important
faults in the matching engine and the results of the tests were correct. One of
them was a case of missing a specific validation check on iceberg orders which
lead to wrong matching. The other was a case of incomplete rollback of trades
which leads to incorrect credit values for the brokers. These faults have not been
detected by any of the unit or BDD tests.

5.2 Code Coverage Analysis

One way to analyze the quality of the generated test suites is to analyze the
branch coverage of the source code obtained by our generated test suites com-

12 A. Zakeriyan et al.

Table 1. Branch coverage percentage of two methods compared to the development
team’s tests

Target Class Dev. Tests Simulated Annealing Genetic Algorithm

Matching Engine 60 59.5± 0.5 59.8± 0.37

Order 85 50.7± 2.2 52± 3

Iceberg 100 83± 0 83± 0

Queue 87 70.9± 10.3 74.8± 7.2

PO Observer 70 70± 0 70± 0

Credit Observer 79 77.4± 2 78.5± 1.5

pared to the the branch coverage of the unit tests of the system. By branch
coverage we mean the percentage of the true and false branches of the condi-
tional constructs in the source code (e.g., ‘if’ statements and loop conditions)
that are executed at least once. Although there are stronger coverage criteria
like prime path coverage, using these methods is impractical in our case, since to
the best of our knowledge there is no automatic tool to calculate these metrics
on an enterprise application scale code base. To calculate the branch coverage
of the test suites, we used JaCoCo11 which is a well-known coverage analysis
industrial tool.

We ran all unit and BDD tests in the system and computed the branch
coverage and mutation score for them as the baseline for comparison. It must be
noted that since our specification does not yet fully cover the logic of matching
engine, only those classes that implement the specified part of the logic are
selected for comparison.

Table 1 shows the results of the branch coverage analysis for the three test
suites: the tests developed by the development team (Dev. Tests), and the ones
generated by our two algorithms. The results present the average and the stan-
dard deviation of the branch coverage across the test suites for each method. In
each test suite for Genetic Algorithm there are 15 test cases on average. For Sim-
ulated Annealing this number is about 19 test cases per test suite. As the table
shows, in many of the classes the branch coverage of the Genetic Algorithms and
Simulated Annealing is almost equal to the branch coverage of the development
team’s tests. The difference of the coverage in Order, Iceberg and Queue classes
is due to some methods that were not yet modeled in specification. Also, the
number of test cases generated for each test suite for both methods is much less
than the development test suite which reduces the execution time of test suite.

5.3 Mutation Analysis

The second method used to measure the effectiveness of test cases is mutation
analysis. To this aim, we used Pitest12 tool which is widely used for mutation
testing in the domain of enterprise applications. It supports a wide variety of
mutation operators, from which we took its default mutation operator set.

11 https://www.jacoco.org
12 https://pitest.org

Towards Test Case Generation for Industrial Software Systems 13

Table 2. Mutation percentage of two methods compared to the development team’s
tests

Target Class Dev. Tests Simulated Annealing Genetic Algorithm

Matching Engine 48 55.6± 2.8 57.1± 2.1

Order 60 42.6± 1.7 46.2± 6.9

Iceberg 78 54.6± 4 56± 0

Queue 73 49.2± 7 56± 12.3

PO Observer 38 48.6± 8 63.8± 15.7

Credit Observer 75 57± 26.2 72.2± 22.9

As the mutation framework cannot calculate the mutation score where there
is a test failure, we had to exclude the test cases that produced the two discovered
faults from the test cases to calculate the mutation score. Table 2 shows the
mutation scores, i.e., the percentage of the mutants that were killed by the test
suites.

As table 2 shows, in many of the classes, more mutants were killed in test
generated by both our methods compared to the development team’s tests. Like
in the case of branch coverage, in Order, Iceberg and Queue classes the mutation
score is lower in our tests, because those classes contain logic that has not been
specified yet. Also, there is a big variance in Credit and PO classes. This is
because, as mentioned, some test cases had to be excluded from the test suites
so that we could calculate the mutation score. These classes were the target of
those tests since the bugs were related to logic in these classes. As a result, some
test suites where heavily affected by the exclusion of the test cases, causing a
big variance in the mutation score.

The results of both evaluation methods show that the tests generated by
our method are at least as effective as the tests that were generated by domain
experts and developers. This is achieved by a much smaller test suite. The ef-
fort to develop the unit and BDD tests was much more than the effort put to
develop the specification and generate the required adapters to run the tests
(approximately 60 man days).

6 Related Work

Formal Methods for the Analysis of Auction Theory. There is a limited
number of works in the formal analysis of trading algorithms in financial market.
Sarswat et al. in [16] formalized various notations for auction theory which are
required for the analysis of trades in financial markets. These notations were
implemented in Coq and authors defined properties like fairness, uniformity,
maximality, and individual rationality using the defined notations. Lange et al.
in [14] showed how theorem proving tools can be used for the analysis of the
consequences of different options in auction designs. In comparison with these
works, the focus of this paper is in the implementation of auction theories not
in their specifications.

14 A. Zakeriyan et al.

Formal Methods in Automatic Test Case Generation for Enterprise
Applications. Asaadi et al. applied model-based testing techniques to an Elec-
tronic Funds Transfer (EFT) switch [4]. They used ISO 8583 specification to
provide a formalization of the transaction flows in terms of a labeled transition
system. They used input space partitioning to generate test data and the for-
malization for model-based testing based on input-output conformance testing.
In comparison with this work, we use feedback for the better generation of test
cases; however, in [4] test cases are randomly generated. In addition, they used
Timed Automata [3,5] to specify ISO 8583 which cannot be used for our case, as
it is data-intensive application not a control-intensive application. In contrast,
Liu et al. in [15] proposed Vibration-Method for automatic generation of test
cases and test oracle from model-based formal specifications, which is tailored
for testing information systems in which rich data types are used. This method
provides automatic test case generation based on functional scenarios, test case
generation criteria, and a mechanism for deriving test oracle. The main differ-
ence between the work of [15] and this paper is in the specification language. The
functional nature of the specification language of this paper makes it appropriate
for specifying the order matching algorithms, which are explained procedurally
in the informal specifications, compared to a pre- and post-condition specifica-
tion style of [15]. In addition, by automatically translating the specifications into
Haskell programs, we make use of various tools such as coverage tools. There
are also some works on automatic test case generation for software components
using formal method, e.g. [13,8]. These works focus on the detailed description of
the behavior of components and cannot be generalized for testing an enterprise
application.

7 Conclusion

In this paper, we reported our experience in applying specification-based testing
to an industrial enterprise software system. The system is specified in a functional
language which has a formal foundation and is not too difficult to work with for
an average software engineer. We developed simple specification patterns such as
the decorator which modularizes the specification and make it easier to develop
and understand. Our experience showed that the size of the specification is much
smaller than the functional tests developed by the development team, and could
be developed by a considerably less effort. The test case generation is guided by
the specification coverage with the aim of taking all corner cases into account.
The overall results indicated that we can attain the same coverage and mutation
score with much less effort.

In addition to the work needed to make the specification fully cover the
domain logic, there is more room for improvement in several aspects. As an
example, more sophisticated fitness functions may be used during test case gen-
eration, such as the ones incorporating branch distance measures [9]. Also, more
patterns and abstraction mechanisms may be developed to further simplify the
specification and make it more understandable.

Towards Test Case Generation for Industrial Software Systems 15

References

1. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right
Software. Manning Publications (2011)

2. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review
of the application and empirical investigation of search-based test case generation.
IEEE Transactions on Software Engineering 36(6), 742–762 (2009)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

4. Asaadi, H.R., Khosravi, R., Mousavi, M.R., Noroozi, N.: Towards model-based
testing of electronic funds transfer systems. In: Fundamentals of Software Engi-
neering - 4th IPM International Conference, FSEN. LNCS, vol. 7141, pp. 253–267.
Springer (2011)

5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool
suite for automatic verification of real-time systems. In: Proc. of the DIMACS/SY-
CON Workshop on Verification and Control of Hybrid Systems. LNCS, vol. 1066,
pp. 232–243. Springer (1995)

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004)

7. Dyson, P., Longshaw, A.: Architecting enterprise solutions: patterns for high-
capability Internet-based systems. John Wiley & Sons (2004)

8. Fang, Y., Zhu, H., Zeyda, F., Fei, Y.: Modeling and analysis of the disruptor frame-
work in CSP. In: IEEE 8th Annual Computing and Communication Workshop and
Conference, CCWC. pp. 803–809. IEEE (2018)

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2), 276–291 (2012)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1 edn. (1994)

11. Harman, M., McMinn, P., De Souza, J.T., Yoo, S.: Search based software engi-
neering: Techniques, taxonomy, tutorial. In: Empirical software engineering and
verification, pp. 1–59. Springer (2010)

12. Hierons, R., Bogdanov, K., Bowen, J., Cleaveland, R., Derrick, J., Dick, J., Gheo-
rghe, M., Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons, A., Vilkomir,
S., Woodward, M., Zedan, H.: Using formal specifications to support testing. ACM
Comput. Surv. 41(2) (2009)

13. Kong, L., Zhu, H., Zhou, B.: Automated testing EJB components based on alge-
braic specifications. In: 31st Annual International Computer Software and Appli-
cations Conference, COMPSAC. vol. 2, pp. 717–722. IEEE (2007)

14. Lange, C., Caminati, M.B., Kerber, M., Mossakowski, T., Rowat, C., Wenzel,
M., Windsteiger, W.: A qualitative comparison of the suitability of four theorem
provers for basic auction theory. In: Intelligent Computer Mathematics - MKM,
Calculemus, DML, and Systems and Projects, Held as Part of CICM 2013. LNCS,
vol. 7961, pp. 200–215. Springer (2013)

15. Liu, S., Nakajima, S.: Automatic test case and test oracle genera-
tion based on functional scenarios in formal specifications for confor-
mance testing. IEEE Transactions on Software Engineering pp. 1–1 (2020).
https://doi.org/10.1109/TSE.2020.2999884

16. Sarswat, S., Singh, A.: Formally verified trades in financial markets. arXiv preprint
arXiv:2007.10805 (2020)

https://doi.org/10.1109/TSE.2020.2999884

	Towards Automatic Test Case Generation for Industrial Software Systems Based on Functional Specifications

